Loading theory "HOL-Library.Cancellation" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Library.Permutations" via "HOL-Library.Multiset") Loading theory "HOL-Library.Disjoint_Sets" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Library.Permutations") Loading theory "HOL-Library.FuncSet" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product") Loading theory "HOL-Library.Infinite_Set" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex" via "HOL-Analysis.Linear_Algebra") Loading theory "HOL-Library.Old_Datatype" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product" via "HOL-Library.Countable_Set" via "HOL-Library.Countable") Loading theory "HOL-Library.Nat_Bijection" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product" via "HOL-Library.Countable_Set" via "HOL-Library.Countable") Found termination order: "(\p. size (snd p)) <*mlex*> {}" consts enumerate :: "'a set \ nat \ 'a" ### theory "HOL-Library.Disjoint_Sets" ### 0.323s elapsed time, 1.940s cpu time, 0.000s GC time Loading theory "HOL-Library.Phantom_Type" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product" via "HOL-Library.Numeral_Type" via "HOL-Library.Cardinality") Found termination order: "size_list size <*mlex*> {}" ### theory "HOL-Library.Infinite_Set" ### 0.377s elapsed time, 2.256s cpu time, 0.000s GC time Loading theory "HOL-Library.Product_Plus" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex" via "HOL-Analysis.Linear_Algebra" via "HOL-Analysis.Euclidean_Space" via "HOL-Analysis.Product_Vector") instantiation prod :: (zero, zero) zero zero_prod == zero_class.zero :: 'a \ 'b instantiation prod :: (plus, plus) plus plus_prod == plus :: 'a \ 'b \ 'a \ 'b \ 'a \ 'b instantiation prod :: (minus, minus) minus minus_prod == minus :: 'a \ 'b \ 'a \ 'b \ 'a \ 'b instantiation prod :: (uminus, uminus) uminus uminus_prod == uminus :: 'a \ 'b \ 'a \ 'b signature CANCEL = sig val proc: Proof.context -> cterm -> thm option end functor Cancel_Fun (Data: CANCEL_NUMERALS_DATA): CANCEL ### theory "HOL-Library.Product_Plus" ### 0.128s elapsed time, 0.756s cpu time, 0.000s GC time Loading theory "HOL-Library.Product_Order" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure" via "HOL-Analysis.Nonnegative_Lebesgue_Integration" via "HOL-Analysis.Borel_Space" via "HOL-Analysis.Ordered_Euclidean_Space") ### theory "HOL-Library.Nat_Bijection" ### 0.528s elapsed time, 3.156s cpu time, 0.000s GC time Loading theory "HOL-Library.Set_Algebras" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex") instantiation prod :: (ord, ord) ord less_eq_prod == less_eq :: 'a \ 'b \ 'a \ 'b \ bool less_prod == less :: 'a \ 'b \ 'a \ 'b \ bool signature CANCEL_DATA = sig val dest_coeff: term -> int * term val dest_sum: term -> term list val find_first_coeff: term -> term list -> int * term list val mk_coeff: int * term -> term val mk_sum: typ -> term list -> term val norm_ss1: simpset val norm_ss2: simpset val norm_tac: Proof.context -> tactic val numeral_simp_tac: Proof.context -> tactic val prove_conv: tactic list -> Proof.context -> thm list -> term * term -> thm option val simplify_meta_eq: Proof.context -> thm -> thm val trans_tac: Proof.context -> thm option -> tactic end structure Cancel_Data: CANCEL_DATA instantiation set :: (plus) plus plus_set == plus :: 'a set \ 'a set \ 'a set instantiation set :: (times) times times_set == times :: 'a set \ 'a set \ 'a set instantiation prod :: (inf, inf) inf inf_prod == inf :: 'a \ 'b \ 'a \ 'b \ 'a \ 'b instantiation set :: (zero) zero zero_set == zero_class.zero :: 'a set instantiation set :: (one) one one_set == one_class.one :: 'a set instantiation prod :: (sup, sup) sup sup_prod == sup :: 'a \ 'b \ 'a \ 'b \ 'a \ 'b instantiation prod :: (top, top) top top_prod == top :: 'a \ 'b signature OLD_DATATYPE = sig val check_specs: spec list -> theory -> spec list * Proof.context type config = {quiet: bool, strict: bool} val default_config: config type descr = (int * (string * dtyp list * (string * dtyp list) list)) list val distinct_lemma: thm datatype dtyp = DtRec of int | DtTFree of string * sort | DtType of string * dtyp list type info = {case_cong: thm, case_cong_weak: thm, case_name: string, case_rewrites: thm list, descr: descr, distinct: thm list, exhaust: thm, index: int, induct: thm, inducts: thm list, inject: thm list, nchotomy: thm, rec_names: string list, rec_rewrites: thm list, split: thm, split_asm: thm} val read_specs: spec_cmd list -> theory -> spec list * Proof.context type spec = (binding * (string * sort) list * mixfix) * (binding * typ list * mixfix) list type spec_cmd = (binding * (string * string option) list * mixfix) * (binding * string list * mixfix) list end structure Old_Datatype: OLD_DATATYPE ### theory "HOL-Library.Old_Datatype" ### 0.642s elapsed time, 3.828s cpu time, 0.000s GC time Loading theory "HOL-Library.Countable" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product" via "HOL-Library.Countable_Set") instantiation prod :: (bot, bot) bot bot_prod == bot :: 'a \ 'b ### theory "HOL-Library.FuncSet" ### 0.747s elapsed time, 4.380s cpu time, 0.444s GC time Loading theory "HOL-Analysis.Metric_Arith" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike" via "HOL-Analysis.Convex_Euclidean_Space" via "HOL-Analysis.Topology_Euclidean_Space" via "HOL-Analysis.Elementary_Normed_Spaces" via "HOL-Analysis.Elementary_Metric_Spaces") signature CANCEL_SIMPROCS = sig val diff_cancel: Proof.context -> cterm -> thm option val eq_cancel: Proof.context -> cterm -> thm option val less_cancel: Proof.context -> cterm -> thm option val less_eq_cancel: Proof.context -> cterm -> thm option end structure Cancel_Simprocs: CANCEL_SIMPROCS ### theory "HOL-Library.Cancellation" ### 0.776s elapsed time, 4.576s cpu time, 0.444s GC time Loading theory "HOL-Library.Multiset" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Library.Permutations") instantiation prod :: (Inf, Inf) Inf Inf_prod == Inf :: ('a \ 'b) set \ 'a \ 'b instantiation prod :: (Sup, Sup) Sup Sup_prod == Sup :: ('a \ 'b) set \ 'a \ 'b ### theory "HOL-Library.Product_Order" ### 0.364s elapsed time, 2.108s cpu time, 0.444s GC time Loading theory "HOL-Analysis.Inner_Product" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex" via "HOL-Analysis.Linear_Algebra" via "HOL-Analysis.Euclidean_Space") ### theory "HOL-Library.Set_Algebras" ### 0.378s elapsed time, 2.200s cpu time, 0.444s GC time Loading theory "HOL-Analysis.L2_Norm" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex" via "HOL-Analysis.Linear_Algebra" via "HOL-Analysis.Euclidean_Space") instantiation multiset :: (type) cancel_comm_monoid_add zero_multiset == zero_class.zero :: 'a multiset minus_multiset == minus :: 'a multiset \ 'a multiset \ 'a multiset plus_multiset == plus :: 'a multiset \ 'a multiset \ 'a multiset ### theory "HOL-Analysis.L2_Norm" ### 0.086s elapsed time, 0.516s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Operator_Norm" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative") ### theory "HOL-Analysis.Operator_Norm" ### 0.095s elapsed time, 0.572s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Poly_Roots" (required by "HOL-Analysis.Analysis") ### theory "HOL-Library.Phantom_Type" ### 0.822s elapsed time, 4.840s cpu time, 0.444s GC time Loading theory "HOL-Library.Cardinality" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product" via "HOL-Library.Numeral_Type") ### Additional type variable(s) in locale specification "countable": 'a ### theory "HOL-Analysis.Poly_Roots" ### 0.100s elapsed time, 0.596s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Product_Vector" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex" via "HOL-Analysis.Linear_Algebra" via "HOL-Analysis.Euclidean_Space") ### Additional type variable(s) in locale specification "CARD_1": 'a class countable = type + assumes "ex_inj": "\to_nat. inj to_nat" class CARD_1 = type + assumes "CARD_1": "CARD('a) = 1" ### Additional type variable(s) in locale specification "card2": 'a Proofs for inductive predicate(s) "finite_item" ### Partially applied constant "Multiset.inf_subset_mset" on left hand side of equation, in theorem: ### semilattice_inf.Inf_fin (\#) (set (?x # ?xs)) \ ### fold (\#) ?xs ?x Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... signature METRIC_ARITH = sig val metric_arith_tac: Proof.context -> int -> tactic val trace: bool Config.T end structure MetricArith: METRIC_ARITH ### theory "HOL-Analysis.Metric_Arith" ### 0.660s elapsed time, 3.960s cpu time, 0.000s GC time Loading theory "HOL-Library.Discrete" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests") ### Partially applied constant "Multiset.sup_subset_mset" on left hand side of equation, in theorem: ### semilattice_sup.Sup_fin (\#) (set (?x # ?xs)) \ ### fold (\#) ?xs ?x class card2 = finite + assumes "two_le_card": "2 \ CARD('a)" class real_inner = dist_norm + real_vector + sgn_div_norm + uniformity_dist + open_uniformity + fixes inner :: "'a \ 'a \ real" assumes "inner_commute": "\x y. inner x y = inner y x" and "inner_add_left": "\x y z. inner (x + y) z = inner x z + inner y z" and "inner_scaleR_left": "\r x y. inner (r *\<^sub>R x) y = r * inner x y" and "inner_ge_zero": "\x. 0 \ inner x x" and "inner_eq_zero_iff": "\x. (inner x x = 0) = (x = (0::'a))" and "norm_eq_sqrt_inner": "\x. norm x = sqrt (inner x x)" class finite_UNIV = type + fixes finite_UNIV :: "('a, bool) phantom" assumes "finite_UNIV": "finite_UNIV = Phantom('a) (finite UNIV)" locale module_prod fixes s1 :: "'a \ 'b \ 'b" and s2 :: "'a \ 'c \ 'c" assumes "module_prod s1 s2" ### Rewrite rule not in simpset: ### Wellfounded.accp log_rel ?n1 \ ### log ?n1 \ if ?n1 < 2 then 0 else Suc (log (?n1 div 2)) Found termination order: "size <*mlex*> {}" class card_UNIV = finite_UNIV + fixes card_UNIV :: "('a, nat) phantom" assumes "card_UNIV": "card_UNIV_class.card_UNIV = Phantom('a) CARD('a)" instantiation nat :: card_UNIV card_UNIV_nat == card_UNIV_class.card_UNIV :: (nat, nat) phantom finite_UNIV_nat == finite_UNIV :: (nat, bool) phantom instantiation int :: card_UNIV card_UNIV_int == card_UNIV_class.card_UNIV :: (int, nat) phantom finite_UNIV_int == finite_UNIV :: (int, bool) phantom instantiation natural :: card_UNIV card_UNIV_natural == card_UNIV_class.card_UNIV :: (natural, nat) phantom finite_UNIV_natural == finite_UNIV :: (natural, bool) phantom instantiation integer :: card_UNIV card_UNIV_integer == card_UNIV_class.card_UNIV :: (integer, nat) phantom finite_UNIV_integer == finite_UNIV :: (integer, bool) phantom val old_countable_datatype_tac = fn: Proof.context -> int -> tactic instantiation list :: (type) card_UNIV card_UNIV_list == card_UNIV_class.card_UNIV :: ('a list, nat) phantom finite_UNIV_list == finite_UNIV :: ('a list, bool) phantom ### theory "HOL-Library.Discrete" ### 0.218s elapsed time, 1.252s cpu time, 0.000s GC time Loading theory "HOL-Library.Indicator_Function" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Connected" via "HOL-Analysis.Abstract_Topology_2") locale vector_space_prod fixes s1 :: "'a \ 'b \ 'b" (infixr \*a\ 75) and s2 :: "'a \ 'c \ 'c" (infixr \*b\ 75) assumes "vector_space_prod (*a) (*b)" instantiation unit :: card_UNIV card_UNIV_unit == card_UNIV_class.card_UNIV :: (unit, nat) phantom finite_UNIV_unit == finite_UNIV :: (unit, bool) phantom Found termination order: "(\p. size (fst p)) <*mlex*> {}" instantiation bool :: card_UNIV card_UNIV_bool == card_UNIV_class.card_UNIV :: (bool, nat) phantom finite_UNIV_bool == finite_UNIV :: (bool, bool) phantom instantiation char :: card_UNIV card_UNIV_char == card_UNIV_class.card_UNIV :: (char, nat) phantom finite_UNIV_char == finite_UNIV :: (char, bool) phantom instantiation prod :: (real_vector, real_vector) real_vector scaleR_prod == scaleR :: real \ 'a \ 'b \ 'a \ 'b instantiation prod :: (finite_UNIV, finite_UNIV) finite_UNIV finite_UNIV_prod == finite_UNIV :: ('a \ 'b, bool) phantom instantiation prod :: (card_UNIV, card_UNIV) card_UNIV card_UNIV_prod == card_UNIV_class.card_UNIV :: ('a \ 'b, nat) phantom instantiation sum :: (finite_UNIV, finite_UNIV) finite_UNIV finite_UNIV_sum == finite_UNIV :: ('a + 'b, bool) phantom ### ML warning (line 93 of "~~/src/HOL/Tools/BNF/bnf_lfp_countable.ML"): ### Pattern is not exhaustive. ### ML warning (line 139 of "~~/src/HOL/Tools/BNF/bnf_lfp_countable.ML"): ### Pattern is not exhaustive. ### ML warning (line 143 of "~~/src/HOL/Tools/BNF/bnf_lfp_countable.ML"): ### Matches are not exhaustive. ### ML warning (line 145 of "~~/src/HOL/Tools/BNF/bnf_lfp_countable.ML"): ### Matches are not exhaustive. ### ML warning (line 156 of "~~/src/HOL/Tools/BNF/bnf_lfp_countable.ML"): ### Pattern is not exhaustive. signature BNF_LFP_COUNTABLE = sig val countable_datatype_tac: Proof.context -> tactic val derive_encode_injectives_thms: Proof.context -> string list -> thm list end structure BNF_LFP_Countable: BNF_LFP_COUNTABLE instantiation sum :: (card_UNIV, card_UNIV) card_UNIV card_UNIV_sum == card_UNIV_class.card_UNIV :: ('a + 'b, nat) phantom val countable_datatype_tac = fn: Proof.context -> thm -> thm Seq.seq val countable_tac = fn: Proof.context -> int -> tactic instantiation prod :: (metric_space, metric_space) dist dist_prod == dist :: 'a \ 'b \ 'a \ 'b \ real instantiation fun :: (finite_UNIV, card_UNIV) finite_UNIV finite_UNIV_fun == finite_UNIV :: ('a \ 'b, bool) phantom instantiation fun :: (card_UNIV, card_UNIV) card_UNIV card_UNIV_fun == card_UNIV_class.card_UNIV :: ('a \ 'b, nat) phantom instantiation prod :: (metric_space, metric_space) uniformity_dist uniformity_prod == uniformity :: (('a \ 'b) \ 'a \ 'b) filter instantiation option :: (finite_UNIV) finite_UNIV finite_UNIV_option == finite_UNIV :: ('a option, bool) phantom instantiation prod :: (metric_space, metric_space) metric_space instantiation option :: (card_UNIV) card_UNIV card_UNIV_option == card_UNIV_class.card_UNIV :: ('a option, nat) phantom signature MULTISET_SIMPROCS = sig val subset_cancel_msets: Proof.context -> cterm -> thm option val subseteq_cancel_msets: Proof.context -> cterm -> thm option end structure Multiset_Simprocs: MULTISET_SIMPROCS instantiation String.literal :: card_UNIV card_UNIV_literal == card_UNIV_class.card_UNIV :: (String.literal, nat) phantom finite_UNIV_literal == finite_UNIV :: (String.literal, bool) phantom instantiation set :: (finite_UNIV) finite_UNIV finite_UNIV_set == finite_UNIV :: ('a set, bool) phantom instantiation prod :: (real_normed_vector, real_normed_vector) real_normed_vector sgn_prod == sgn :: 'a \ 'b \ 'a \ 'b norm_prod == norm :: 'a \ 'b \ real instantiation set :: (card_UNIV) card_UNIV card_UNIV_set == card_UNIV_class.card_UNIV :: ('a set, nat) phantom instantiation multiset :: (type) Inf Inf_multiset == Inf :: 'a multiset set \ 'a multiset instantiation Enum.finite_1 :: card_UNIV card_UNIV_finite_1 == card_UNIV_class.card_UNIV :: (Enum.finite_1, nat) phantom finite_UNIV_finite_1 == finite_UNIV :: (Enum.finite_1, bool) phantom instantiation multiset :: (type) Sup Sup_multiset == Sup :: 'a multiset set \ 'a multiset instantiation Enum.finite_2 :: card_UNIV card_UNIV_finite_2 == card_UNIV_class.card_UNIV :: (Enum.finite_2, nat) phantom finite_UNIV_finite_2 == finite_UNIV :: (Enum.finite_2, bool) phantom instantiation Enum.finite_3 :: card_UNIV card_UNIV_finite_3 == card_UNIV_class.card_UNIV :: (Enum.finite_3, nat) phantom finite_UNIV_finite_3 == finite_UNIV :: (Enum.finite_3, bool) phantom instantiation Enum.finite_4 :: card_UNIV card_UNIV_finite_4 == card_UNIV_class.card_UNIV :: (Enum.finite_4, nat) phantom finite_UNIV_finite_4 == finite_UNIV :: (Enum.finite_4, bool) phantom instantiation real :: real_inner inner_real == inner :: real \ real \ real instantiation Enum.finite_5 :: card_UNIV card_UNIV_finite_5 == card_UNIV_class.card_UNIV :: (Enum.finite_5, nat) phantom finite_UNIV_finite_5 == finite_UNIV :: (Enum.finite_5, bool) phantom instantiation complex :: real_inner inner_complex == inner :: complex \ complex \ real instantiation multiset :: (type) size size_multiset == size :: 'a multiset \ nat ### theory "HOL-Library.Indicator_Function" ### 0.474s elapsed time, 2.716s cpu time, 0.000s GC time Loading theory "HOL-Library.Liminf_Limsup" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests" via "HOL-Library.Extended_Real") bundle inner_syntax bundle no_inner_syntax ### theory "HOL-Analysis.Inner_Product" ### 1.246s elapsed time, 7.288s cpu time, 0.000s GC time Loading theory "HOL-Library.Nonpos_Ints" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics") ### Code generator: dropping subsumed code equation ### List.coset [] \ set [] \ False ### theory "HOL-Library.Countable" ### 1.755s elapsed time, 10.092s cpu time, 1.312s GC time Loading theory "HOL-Library.Countable_Set" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product") locale comp_fun_commute fixes f :: "'a \ 'b \ 'b" assumes "comp_fun_commute f" locale finite_dimensional_vector_space_prod fixes s1 :: "'a \ 'b \ 'b" (infixr \*a\ 75) and s2 :: "'a \ 'c \ 'c" (infixr \*b\ 75) and B1 :: "'b set" and B2 :: "'c set" assumes "finite_dimensional_vector_space_prod (*a) (*b) B1 B2" ### theory "HOL-Library.Cardinality" ### 1.392s elapsed time, 7.972s cpu time, 0.868s GC time Loading theory "HOL-Library.Numeral_Type" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space" via "HOL-Analysis.Finite_Cartesian_Product") consts mset :: "'a list \ 'a multiset" ### theory "HOL-Analysis.Product_Vector" ### 1.339s elapsed time, 7.656s cpu time, 0.868s GC time Loading theory "HOL-Analysis.Euclidean_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex" via "HOL-Analysis.Linear_Algebra") ### theory "HOL-Library.Nonpos_Ints" ### 0.417s elapsed time, 2.316s cpu time, 0.868s GC time Loading theory "HOL-Library.Periodic_Fun" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental") locale periodic_fun fixes f :: "'a \ 'b" and g :: "'a \ 'a \ 'a" and gm :: "'a \ 'a \ 'a" and g1 :: "'a \ 'a" and gn1 :: "'a \ 'a" assumes "periodic_fun f g gm g1 gn1" locale periodic_fun_simple fixes f :: "'a \ 'b" and period :: "'a" assumes "periodic_fun_simple f period" locale periodic_fun_simple' fixes f :: "'a \ 'b" assumes "periodic_fun_simple' f" ### theory "HOL-Library.Periodic_Fun" ### 0.137s elapsed time, 0.828s cpu time, 0.000s GC time Loading theory "HOL-Library.Sum_of_Squares" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike" via "HOL-Analysis.Convex_Euclidean_Space" via "HOL-Analysis.Topology_Euclidean_Space" via "HOL-Analysis.Norm_Arith") instantiation num1 :: CARD_1 instantiation num1 :: {comm_monoid_mult,numeral,comm_ring} uminus_num1 == uminus :: num1 \ num1 zero_num1 == zero_class.zero :: num1 minus_num1 == minus :: num1 \ num1 \ num1 plus_num1 == plus :: num1 \ num1 \ num1 one_num1 == one_class.one :: num1 times_num1 == times :: num1 \ num1 \ num1 class linorder = order + assumes "linear": "\x y. x \ y \ y \ x" instantiation num1 :: linorder less_eq_num1 == less_eq :: num1 \ num1 \ bool less_num1 == less :: num1 \ num1 \ bool locale mod_type fixes n :: "int" and Rep :: "'a \ int" and Abs :: "int \ 'a" assumes "mod_type n Rep Abs" locale mod_ring fixes n :: "int" and Rep :: "'a \ int" and Abs :: "int \ 'a" assumes "mod_ring n Rep Abs" ### Rule already declared as safe introduction (intro!) ### True ### Ignoring duplicate introduction (intro) ### True instantiation bit0 :: (finite) {minus,one,plus,times,uminus,zero} bit1 :: (finite) {minus,one,plus,times,uminus,zero} zero_bit0 == zero_class.zero :: 'a bit0 uminus_bit0 == uminus :: 'a bit0 \ 'a bit0 times_bit0 == times :: 'a bit0 \ 'a bit0 \ 'a bit0 plus_bit0 == plus :: 'a bit0 \ 'a bit0 \ 'a bit0 one_bit0 == one_class.one :: 'a bit0 minus_bit0 == minus :: 'a bit0 \ 'a bit0 \ 'a bit0 zero_bit1 == zero_class.zero :: 'a bit1 uminus_bit1 == uminus :: 'a bit1 \ 'a bit1 times_bit1 == times :: 'a bit1 \ 'a bit1 \ 'a bit1 plus_bit1 == plus :: 'a bit1 \ 'a bit1 \ 'a bit1 one_bit1 == one_class.one :: 'a bit1 minus_bit1 == minus :: 'a bit1 \ 'a bit1 \ 'a bit1 locale comm_monoid_mset fixes f :: "'a \ 'a \ 'a" (infixl \\<^bold>*\ 70) and z :: "'a" (\\<^bold>1\) assumes "comm_monoid_mset (\<^bold>*) \<^bold>1" ### theory "HOL-Library.Liminf_Limsup" ### 0.716s elapsed time, 4.124s cpu time, 0.868s GC time class comm_monoid_add = ab_semigroup_add + monoid_add + assumes "add_0": "\a. (0::'a) + a = a" ### theory "HOL-Library.Countable_Set" ### 0.496s elapsed time, 2.996s cpu time, 0.000s GC time Loading theory "HOL-Library.Countable_Complete_Lattices" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests" via "HOL-Library.Extended_Real" via "HOL-Library.Extended_Nat" via "HOL-Library.Order_Continuity") Loading theory "HOL-Library.Set_Idioms" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Connected" via "HOL-Analysis.Abstract_Topology_2" via "HOL-Analysis.Elementary_Topology") instantiation bit0 :: (finite) linorder bit1 :: (finite) linorder less_eq_bit0 == less_eq :: 'a bit0 \ 'a bit0 \ bool less_bit0 == less :: 'a bit0 \ 'a bit0 \ bool less_eq_bit1 == less_eq :: 'a bit1 \ 'a bit1 \ bool less_bit1 == less :: 'a bit1 \ 'a bit1 \ bool class comm_monoid_add = ab_semigroup_add + monoid_add + assumes "add_0": "\a. (0::'a) + a = a" class canonically_ordered_monoid_add = ordered_comm_monoid_add + assumes "le_iff_add": "\a b. (a \ b) = (\c. b = a + c)" instantiation num0 :: equal equal_num0 == equal_class.equal :: num0 \ num0 \ bool instantiation num1 :: equal equal_num1 == equal_class.equal :: num1 \ num1 \ bool instantiation num1 :: enum enum_num1 == enum_class.enum :: num1 list enum_all_num1 == enum_class.enum_all :: (num1 \ bool) \ bool enum_ex_num1 == enum_class.enum_ex :: (num1 \ bool) \ bool instantiation num0 :: card_UNIV num1 :: card_UNIV card_UNIV_num0 == card_UNIV_class.card_UNIV :: (num0, nat) phantom finite_UNIV_num0 == finite_UNIV :: (num0, bool) phantom card_UNIV_num1 == card_UNIV_class.card_UNIV :: (num1, nat) phantom finite_UNIV_num1 == finite_UNIV :: (num1, bool) phantom ### theory "HOL-Library.Set_Idioms" ### 0.229s elapsed time, 1.380s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Abstract_Topology" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Connected" via "HOL-Analysis.Abstract_Topology_2") instantiation bit0 :: (finite) equal bit1 :: (finite) equal equal_bit0 == equal_class.equal :: 'a bit0 \ 'a bit0 \ bool equal_bit1 == equal_class.equal :: 'a bit1 \ 'a bit1 \ bool instantiation bit0 :: (finite) enum enum_bit0 == enum_class.enum :: 'a bit0 list enum_all_bit0 == enum_class.enum_all :: ('a bit0 \ bool) \ bool enum_ex_bit0 == enum_class.enum_ex :: ('a bit0 \ bool) \ bool instantiation bit1 :: (finite) enum enum_bit1 == enum_class.enum :: 'a bit1 list enum_all_bit1 == enum_class.enum_all :: ('a bit1 \ bool) \ bool enum_ex_bit1 == enum_class.enum_ex :: ('a bit1 \ bool) \ bool instantiation bit0 :: (finite) finite_UNIV bit1 :: (finite) finite_UNIV finite_UNIV_bit0 == finite_UNIV :: ('a bit0, bool) phantom finite_UNIV_bit1 == finite_UNIV :: ('a bit1, bool) phantom instantiation bit0 :: ({card_UNIV,finite}) card_UNIV bit1 :: ({card_UNIV,finite}) card_UNIV card_UNIV_bit0 == card_UNIV_class.card_UNIV :: ('a bit0, nat) phantom card_UNIV_bit1 == card_UNIV_class.card_UNIV :: ('a bit1, nat) phantom ### theory "HOL-Library.Numeral_Type" ### 0.770s elapsed time, 4.640s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Continuum_Not_Denumerable" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy") class euclidean_space = real_inner + fixes Basis :: "'a set" assumes "nonempty_Basis": "Basis \ {}" assumes "finite_Basis": "finite Basis" assumes "inner_Basis": "\u v. \u \ Basis; v \ Basis\ \ inner u v = (if u = v then 1 else 0)" assumes "euclidean_all_zero_iff": "\x. (\u\Basis. inner x u = 0) = (x = (0::'a))" class comm_monoid_mult = ab_semigroup_mult + monoid_mult + dvd + assumes "mult_1": "\a. (1::'a) * a = a" class countable_complete_lattice = Inf + Sup + lattice + bot + top + assumes "ccInf_lower": "\A x. \countable A; x \ A\ \ Inf A \ x" assumes "ccInf_greatest": "\A z. \countable A; \x. x \ A \ z \ x\ \ z \ Inf A" assumes "ccSup_upper": "\A x. \countable A; x \ A\ \ x \ Sup A" assumes "ccSup_least": "\A z. \countable A; \x. x \ A \ x \ z\ \ Sup A \ z" assumes "ccInf_empty": "Inf {} = top" assumes "ccSup_empty": "Sup {} = bot" ### theory "HOL-Analysis.Continuum_Not_Denumerable" ### 0.411s elapsed time, 2.372s cpu time, 0.688s GC time Loading theory "HOL-Analysis.Elementary_Topology" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Connected" via "HOL-Analysis.Abstract_Topology_2") class linorder = order + assumes "linear": "\x y. x \ y \ y \ x" instantiation multiset :: (preorder) order less_eq_multiset == less_eq :: 'a multiset \ 'a multiset \ bool less_multiset == less :: 'a multiset \ 'a multiset \ bool instantiation multiset :: (preorder) ordered_ab_semigroup_add Proofs for inductive predicate(s) "pw_leq" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... instantiation real :: euclidean_space Basis_real == Basis :: real set class topological_space = open + assumes "open_UNIV": "open UNIV" assumes "open_Int": "\S T. \open S; open T\ \ open (S \ T)" assumes "open_Union": "\K. Ball K open \ open (\ K)" instantiation complex :: euclidean_space Basis_complex == Basis :: complex set class countable_complete_distrib_lattice = countable_complete_lattice + assumes "sup_ccInf": "\B a. countable B \ sup a (Inf B) = Inf (sup a ` B)" assumes "inf_ccSup": "\B a. countable B \ inf a (Sup B) = Sup (inf a ` B)" instantiation prod :: (real_inner, real_inner) real_inner inner_prod == inner :: 'a \ 'b \ 'a \ 'b \ real instantiation prod :: (euclidean_space, euclidean_space) euclidean_space Basis_prod == Basis :: ('a \ 'b) set locale countable_basis fixes p :: "'a set \ bool" and B :: "'a set set" assumes "countable_basis p B" ### theory "HOL-Analysis.Euclidean_Space" ### 2.057s elapsed time, 12.256s cpu time, 0.688s GC time Loading theory "HOL-Analysis.Finite_Cartesian_Product" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants" via "HOL-Analysis.Cartesian_Space") Found termination order: "(\p. length (fst p)) <*mlex*> {}" class second_countable_topology = topological_space + assumes "ex_countable_subbasis": "\B. countable B \ open = generate_topology B" instantiation multiset :: (equal) equal equal_multiset == equal_class.equal :: 'a multiset \ 'a multiset \ bool instantiation multiset :: (random) random random_multiset == random_class.random :: natural \ natural \ natural \ ('a multiset \ (unit \ term)) \ natural \ natural instantiation multiset :: (full_exhaustive) full_exhaustive full_exhaustive_multiset == full_exhaustive_class.full_exhaustive :: ('a multiset \ (unit \ term) \ (bool \ term list) option) \ natural \ (bool \ term list) option Proofs for inductive predicate(s) "pred_mset" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### ML warning (line 379 of "~~/src/HOL/Library/Sum_of_Squares/positivstellensatz.ML"): ### Pattern is not exhaustive. signature FUNC = sig exception DUP of key exception SAME exception UNDEF of key val apply: 'a table -> key -> 'a val applyd: 'a table -> (key -> 'a) -> key -> 'a val choose: 'a table -> key * 'a val combine: ('a -> 'a -> 'a) -> ('a -> bool) -> 'a table -> 'a table -> 'a table val cons_list: key * 'a -> 'a list table -> 'a list table val default: key * 'a -> 'a table -> 'a table val defined: 'a table -> key -> bool val delete: key -> 'a table -> 'a table val delete_safe: key -> 'a table -> 'a table val dest: 'a table -> (key * 'a) list val dest_list: 'a list table -> (key * 'a) list val dom: 'a table -> key list val empty: 'a table val exists: (key * 'a -> bool) -> 'a table -> bool val fold: (key * 'a -> 'b -> 'b) -> 'a table -> 'b -> 'b val fold_rev: (key * 'a -> 'b -> 'b) -> 'a table -> 'b -> 'b val forall: (key * 'a -> bool) -> 'a table -> bool val get_first: (key * 'a -> 'b option) -> 'a table -> 'b option val insert: ('a * 'a -> bool) -> key * 'a -> 'a table -> 'a table val insert_list: ('a * 'a -> bool) -> key * 'a -> 'a list table -> 'a list table val insert_set: key -> set -> set val is_empty: 'a table -> bool val is_single: 'a table -> bool val join: (key -> 'a * 'a -> 'a) -> 'a table * 'a table -> 'a table type key val keys: 'a table -> key list val lookup: 'a table -> key -> 'a option val lookup_key: 'a table -> key -> (key * 'a) option val lookup_list: 'a list table -> key -> 'a list val make: (key * 'a) list -> 'a table val make_list: (key * 'a) list -> 'a list table val make_set: key list -> set val map: (key -> 'a -> 'b) -> 'a table -> 'b table val map_default: key * 'a -> ('a -> 'a) -> 'a table -> 'a table val map_entry: key -> ('a -> 'a) -> 'a table -> 'a table val max: 'a table -> (key * 'a) option val member: ('a * 'b -> bool) -> 'b table -> key * 'a -> bool val merge: ('a * 'a -> bool) -> 'a table * 'a table -> 'a table val merge_list: ('a * 'a -> bool) -> 'a list table * 'a list table -> 'a list table val min: 'a table -> (key * 'a) option val onefunc: key * 'a -> 'a table val remove: ('a * 'b -> bool) -> key * 'a -> 'b table -> 'b table val remove_list: ('a * 'b -> bool) -> key * 'a -> 'b list table -> 'b list table val remove_set: key -> set -> set type set = unit table type 'a table val tryapplyd: 'a table -> key -> 'a -> 'a val update: key * 'a -> 'a table -> 'a table val update_list: ('a * 'a -> bool) -> key * 'a -> 'a list table -> 'a list table val update_new: key * 'a -> 'a table -> 'a table val updatep: (key * 'a -> bool) -> key * 'a -> 'a table -> 'a table end functor FuncFun (Key: KEY): FUNC signature REAL_ARITH = sig type cert_conv = cterm -> thm * pss_tree val cterm_of_rat: Rat.rat -> cterm val dest_ratconst: cterm -> Rat.rat val gen_gen_real_arith: Proof.context -> (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * conv * conv * prover -> cert_conv val gen_prover_real_arith: Proof.context -> prover -> cert_conv val gen_real_arith: Proof.context -> (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * prover -> cert_conv val is_ratconst: cterm -> bool datatype positivstellensatz = Axiom_eq of int | Axiom_le of int | Axiom_lt of int | Eqmul of FuncUtil.poly * positivstellensatz | Product of positivstellensatz * positivstellensatz | Rational_eq of Rat.rat | Rational_le of Rat.rat | Rational_lt of Rat.rat | Square of FuncUtil.poly | Sum of positivstellensatz * positivstellensatz type prover = tree_choice list -> (thm list * thm list * thm list -> positivstellensatz -> thm) -> thm list * thm list * thm list -> thm * pss_tree datatype pss_tree = Branch of pss_tree * pss_tree | Cert of positivstellensatz | Trivial val real_linear_prover: (thm list * thm list * thm list -> positivstellensatz -> thm) -> thm list * thm list * thm list -> thm * pss_tree datatype tree_choice = Left | Right end structure FuncUtil: sig structure Ctermfunc: FUNC structure Intfunc: FUNC structure Intpairfunc: FUNC structure Monomialfunc: FUNC structure Ratfunc: FUNC structure Symfunc: FUNC structure Termfunc: FUNC val dest_monomial: 'a Ctermfunc.table -> (cterm * 'a) list type monomial = int Ctermfunc.table val monomial_ord: int Ctermfunc.table * int Ctermfunc.table -> order val monomial_order: int Ctermfunc.table * int Ctermfunc.table -> order type poly = Rat.rat Monomialfunc.table end structure RealArith: REAL_ARITH Proofs for inductive predicate(s) "rel_mset'" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### Ignoring duplicate rewrite rule: ### homeomorphic_map ?X1 ?Y1 id \ ?Y1 = ?X1 ### theory "HOL-Library.Countable_Complete_Lattices" ### 2.508s elapsed time, 14.844s cpu time, 1.376s GC time Loading theory "HOL-Analysis.Linear_Algebra" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Convex") ### theory "HOL-Library.Multiset" ### 4.623s elapsed time, 27.172s cpu time, 2.244s GC time Loading theory "HOL-Computational_Algebra.Factorial_Ring" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Jordan_Curve" via "HOL-Analysis.Arcwise_Connected" via "HOL-Computational_Algebra.Primes" via "HOL-Computational_Algebra.Euclidean_Algorithm") signature POSITIVSTELLENSATZ_TOOLS = sig val print_cert: RealArith.pss_tree -> string val read_cert: Proof.context -> string -> RealArith.pss_tree end structure Positivstellensatz_Tools: POSITIVSTELLENSATZ_TOOLS bundle vec_syntax bundle no_vec_syntax instantiation vec :: (zero, finite) zero zero_vec == zero_class.zero :: ('a, 'b) vec instantiation vec :: (plus, finite) plus plus_vec == plus :: ('a, 'b) vec \ ('a, 'b) vec \ ('a, 'b) vec instantiation vec :: (minus, finite) minus minus_vec == minus :: ('a, 'b) vec \ ('a, 'b) vec \ ('a, 'b) vec instantiation vec :: (uminus, finite) uminus uminus_vec == uminus :: ('a, 'b) vec \ ('a, 'b) vec instantiation vec :: (times, finite) times times_vec == times :: ('a, 'b) vec \ ('a, 'b) vec \ ('a, 'b) vec signature SUM_OF_SQUARES = sig exception Failure of string val debug: bool Config.T val debug_message: Proof.context -> (unit -> string) -> unit datatype proof_method = Certificate of RealArith.pss_tree | Prover of string -> string val sos_tac: (RealArith.pss_tree -> unit) -> proof_method -> Proof.context -> int -> tactic val trace: bool Config.T val trace_message: Proof.context -> (unit -> string) -> unit end structure Sum_of_Squares: SUM_OF_SQUARES instantiation vec :: (one, finite) one one_vec == one_class.one :: ('a, 'b) vec class real_inner = real_normed_vector + fixes inner :: "'a \ 'a \ real" assumes "inner_commute": "\x y. x \ y = y \ x" and "inner_add_left": "\x y z. (x + y) \ z = x \ z + y \ z" and "inner_scaleR_left": "\r x y. r *\<^sub>R x \ y = r * (x \ y)" and "inner_ge_zero": "\x. 0 \ x \ x" and "inner_eq_zero_iff": "\x. (x \ x = 0) = (x = (0::'a))" and "norm_eq_sqrt_inner": "\x. norm x = sqrt (x \ x)" instantiation vec :: (ord, finite) ord less_eq_vec == less_eq :: ('a, 'b) vec \ ('a, 'b) vec \ bool less_vec == less :: ('a, 'b) vec \ ('a, 'b) vec \ bool signature SOS_WRAPPER = sig val sos_tac: Proof.context -> string option -> int -> tactic end structure SOS_Wrapper: SOS_WRAPPER ### theory "HOL-Library.Sum_of_Squares" ### 3.393s elapsed time, 20.036s cpu time, 1.948s GC time Loading theory "HOL-Library.Permutations" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants") instantiation vec :: (real_vector, finite) real_vector scaleR_vec == scaleR :: real \ ('a, 'b) vec \ ('a, 'b) vec instantiation vec :: (topological_space, finite) topological_space open_vec == open :: ('a, 'b) vec set \ bool instantiation vec :: (metric_space, finite) dist dist_vec == dist :: ('a, 'b) vec \ ('a, 'b) vec \ real instantiation vec :: (metric_space, finite) uniformity_dist uniformity_vec == uniformity :: (('a, 'b) vec \ ('a, 'b) vec) filter Proofs for inductive predicate(s) "generate_topology_on" instantiation vec :: (metric_space, finite) metric_space Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... instantiation vec :: (real_normed_vector, finite) real_normed_vector sgn_vec == sgn :: ('a, 'b) vec \ ('a, 'b) vec norm_vec == norm :: ('a, 'b) vec \ real ### theory "HOL-Analysis.Elementary_Topology" ### 2.542s elapsed time, 15.012s cpu time, 1.260s GC time Loading theory "HOL-Library.Order_Continuity" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests" via "HOL-Library.Extended_Real" via "HOL-Library.Extended_Nat") instantiation vec :: (real_inner, finite) real_inner inner_vec == inner :: ('a, 'b) vec \ ('a, 'b) vec \ real instantiation vec :: (euclidean_space, finite) euclidean_space Basis_vec == Basis :: ('a, 'b) vec set class normalization_semidom = algebraic_semidom + semidom_divide_unit_factor + fixes normalize :: "'a \ 'a" assumes "unit_factor_mult_normalize": "\a. unit_factor a * normalize a = a" and "normalize_0": "normalize (0::'a) = (0::'a)" ### Ignoring duplicate rewrite rule: ### vec_lambda ?g1 $ ?i1 \ ?g1 ?i1 Proofs for inductive predicate(s) "swapidseq" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### theory "HOL-Analysis.Abstract_Topology" ### 3.317s elapsed time, 19.584s cpu time, 1.948s GC time Loading theory "HOL-Analysis.Abstract_Limits" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Linear_Algebra" ### 1.250s elapsed time, 7.404s cpu time, 0.572s GC time Loading theory "HOL-Analysis.Convex" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Abstract_Limits" ### 0.232s elapsed time, 1.404s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Abstract_Topology_2" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Connected") Found termination order: "(\p. size_list size (fst p)) <*mlex*> {}" class semiring_gcd = gcd + normalization_semidom + assumes "gcd_dvd1": "\a b. gcd a b dvd a" and "gcd_dvd2": "\a b. gcd a b dvd b" and "gcd_greatest": "\c a b. \c dvd a; c dvd b\ \ c dvd gcd a b" and "normalize_gcd": "\a b. normalize (gcd a b) = gcd a b" and "lcm_gcd": "\a b. lcm a b = normalize (a * b) div gcd a b" ### theory "HOL-Analysis.Finite_Cartesian_Product" ### 2.244s elapsed time, 13.264s cpu time, 1.260s GC time Loading theory "HOL-Analysis.Cartesian_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Determinants") ### theory "HOL-Library.Permutations" ### 0.796s elapsed time, 4.808s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Norm_Arith" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike" via "HOL-Analysis.Convex_Euclidean_Space" via "HOL-Analysis.Topology_Euclidean_Space") ### theory "HOL-Library.Order_Continuity" ### 0.605s elapsed time, 3.664s cpu time, 0.000s GC time Loading theory "HOL-Library.Extended_Nat" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests" via "HOL-Library.Extended_Real") class infinity = type + fixes infinity :: "'a" instantiation enat :: infinity infinity_enat == infinity :: enat Proofs for inductive predicate(s) "rec_set_enat" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the simplification rules ... ### ML warning (line 103 of "~~/src/HOL/Analysis/normarith.ML"): ### Matches are not exhaustive. ### ML warning (line 347 of "~~/src/HOL/Analysis/normarith.ML"): ### Value identifier (instantiate_cterm') has not been referenced. signature NORM_ARITH = sig val norm_arith: Proof.context -> conv val norm_arith_tac: Proof.context -> int -> tactic end structure NormArith: NORM_ARITH ### theory "HOL-Analysis.Norm_Arith" ### 0.548s elapsed time, 3.132s cpu time, 0.800s GC time ### No equation for constructor "Extended_Nat.infinity_class.infinity" ### in definition of function "the_enat" consts the_enat :: "enat \ nat" instantiation enat :: zero_neq_one one_enat == one_class.one :: enat zero_enat == zero_class.zero :: enat instantiation enat :: comm_monoid_add plus_enat == plus :: enat \ enat \ enat instantiation enat :: {comm_semiring_1,semiring_no_zero_divisors} times_enat == times :: enat \ enat \ enat instantiation enat :: minus minus_enat == minus :: enat \ enat \ enat instantiation enat :: linordered_ab_semigroup_add less_eq_enat == less_eq :: enat \ enat \ bool less_enat == less :: enat \ enat \ bool locale linear_first_finite_dimensional_vector_space fixes scaleB :: "'a \ 'b \ 'b" (infixr \*b\ 75) and scaleC :: "'a \ 'c \ 'c" (infixr \*c\ 75) and BasisB :: "'b set" and f :: "'b \ 'c" assumes "linear_first_finite_dimensional_vector_space (*b) (*c) BasisB f" class factorial_semiring = normalization_semidom + assumes "prime_factorization_exists": "\x. x \ (0::'a) \ \A. (\x. x \# A \ prime_elem x) \ prod_mset A = normalize x" instantiation enat :: {order_bot,order_top} top_enat == top :: enat bot_enat == bot :: enat structure Cancel_Enat_Common: sig val dest_sum: term -> term list val dest_summing: term * term list -> term list val find_first: term -> term list -> term list val find_first_t: term list -> term -> term list -> term list val mk_eq: term * term -> term val mk_sum: typ -> term list -> term val norm_ss: simpset val norm_tac: Proof.context -> tactic val simplify_meta_eq: Proof.context -> thm -> thm -> thm val trans_tac: Proof.context -> thm option -> tactic end structure Eq_Enat_Cancel: sig val proc: Proof.context -> term -> thm option end structure Le_Enat_Cancel: sig val proc: Proof.context -> term -> thm option end structure Less_Enat_Cancel: sig val proc: Proof.context -> term -> thm option end instantiation enat :: complete_lattice Inf_enat == Inf :: enat set \ enat Sup_enat == Sup :: enat set \ enat sup_enat == sup :: enat \ enat \ enat inf_enat == inf :: enat \ enat \ enat ### theory "HOL-Library.Extended_Nat" ### 1.028s elapsed time, 6.028s cpu time, 0.800s GC time Loading theory "HOL-Library.Extended_Real" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests") class factorial_semiring = normalization_semidom + assumes "prime_factorization_exists": "\x. x \ (0::'a) \ \A. (\x. x \# A \ prime_elem x) \ prod_mset A = normalize x" ### theory "HOL-Analysis.Cartesian_Space" ### 2.562s elapsed time, 13.360s cpu time, 6.296s GC time Loading theory "HOL-Analysis.Determinants" (required by "HOL-Analysis.Analysis") instantiation enat :: linorder_topology open_enat == open :: enat set \ bool ### theory "HOL-Analysis.Abstract_Topology_2" ### 2.940s elapsed time, 15.640s cpu time, 6.296s GC time Loading theory "HOL-Analysis.Connected" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Convex" ### 2.999s elapsed time, 15.996s cpu time, 6.296s GC time Loading theory "HOL-Analysis.Elementary_Metric_Spaces" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike" via "HOL-Analysis.Convex_Euclidean_Space" via "HOL-Analysis.Topology_Euclidean_Space" via "HOL-Analysis.Elementary_Normed_Spaces") ### theory "HOL-Analysis.Connected" ### 0.416s elapsed time, 2.480s cpu time, 0.408s GC time instantiation ereal :: uminus uminus_ereal == uminus :: ereal \ ereal Found termination order: "{}" instantiation ereal :: infinity infinity_ereal == infinity :: ereal ### theory "HOL-Analysis.Determinants" ### 0.960s elapsed time, 5.708s cpu time, 0.408s GC time instantiation ereal :: abs abs_ereal == abs :: ereal \ ereal instantiation ereal :: {comm_monoid_add,zero_neq_one} one_ereal == one_class.one :: ereal zero_ereal == zero_class.zero :: ereal plus_ereal == plus :: ereal \ ereal \ ereal instantiation ereal :: linorder less_eq_ereal == less_eq :: ereal \ ereal \ bool less_ereal == less :: ereal \ ereal \ bool instantiation ereal :: {comm_monoid_mult,sgn} sgn_ereal == sgn :: ereal \ ereal times_ereal == times :: ereal \ ereal \ ereal class heine_borel = metric_space + assumes "bounded_imp_convergent_subsequence": "\f. bounded (range f) \ \l r. strict_mono r \ (f \ r) \ l" instantiation ereal :: minus minus_ereal == minus :: ereal \ ereal \ ereal class factorial_semiring_gcd = factorial_semiring + Gcd + assumes "gcd_eq_gcd_factorial": "\a b. gcd a b = gcd_factorial a b" and "lcm_eq_lcm_factorial": "\a b. lcm a b = lcm_factorial a b" and "Gcd_eq_Gcd_factorial": "\A. Gcd A = Gcd_factorial A" and "Lcm_eq_Lcm_factorial": "\A. Lcm A = Lcm_factorial A" instantiation ereal :: inverse inverse_ereal == inverse :: ereal \ ereal divide_ereal == divide :: ereal \ ereal \ ereal instantiation ereal :: lattice inf_ereal == inf :: ereal \ ereal \ ereal sup_ereal == sup :: ereal \ ereal \ ereal instantiation ereal :: complete_lattice Inf_ereal == Inf :: ereal set \ ereal Sup_ereal == Sup :: ereal set \ ereal bot_ereal == bot :: ereal top_ereal == top :: ereal instantiation ereal :: linear_continuum_topology open_ereal == open :: ereal set \ bool ### theory "HOL-Analysis.Elementary_Metric_Spaces" ### 2.583s elapsed time, 15.312s cpu time, 1.448s GC time Loading theory "HOL-Analysis.Elementary_Normed_Spaces" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike" via "HOL-Analysis.Convex_Euclidean_Space" via "HOL-Analysis.Topology_Euclidean_Space") ### theory "HOL-Library.Extended_Real" ### 5.007s elapsed time, 27.988s cpu time, 6.944s GC time Loading theory "HOL-Library.Extended_Nonnegative_Real" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests" via "HOL-Analysis.Extended_Real_Limits") ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g instantiation ennreal :: complete_linorder Inf_ennreal == Inf :: ennreal set \ ennreal Sup_ennreal == Sup :: ennreal set \ ennreal bot_ennreal == bot :: ennreal sup_ennreal == sup :: ennreal \ ennreal \ ennreal top_ennreal == top :: ennreal inf_ennreal == inf :: ennreal \ ennreal \ ennreal less_eq_ennreal == less_eq :: ennreal \ ennreal \ bool less_ennreal == less :: ennreal \ ennreal \ bool ### Ignoring duplicate rewrite rule: ### f (0::'a) \ 0::'b ### Ignoring duplicate rewrite rule: ### f (0::'a) \ 0::'b instantiation ennreal :: infinity infinity_ennreal == infinity :: ennreal instantiation ennreal :: {comm_semiring_1,semiring_1_no_zero_divisors} zero_ennreal == zero_class.zero :: ennreal plus_ennreal == plus :: ennreal \ ennreal \ ennreal one_ennreal == one_class.one :: ennreal times_ennreal == times :: ennreal \ ennreal \ ennreal instantiation ennreal :: minus minus_ennreal == minus :: ennreal \ ennreal \ ennreal instantiation ennreal :: inverse inverse_ennreal == inverse :: ennreal \ ennreal divide_ennreal == divide :: ennreal \ ennreal \ ennreal ### theory "HOL-Analysis.Elementary_Normed_Spaces" ### 1.541s elapsed time, 9.280s cpu time, 0.456s GC time Loading theory "HOL-Analysis.Topology_Euclidean_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike" via "HOL-Analysis.Convex_Euclidean_Space") ### theory "HOL-Computational_Algebra.Factorial_Ring" ### 8.533s elapsed time, 48.932s cpu time, 8.772s GC time Loading theory "HOL-Computational_Algebra.Euclidean_Algorithm" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Jordan_Curve" via "HOL-Analysis.Arcwise_Connected" via "HOL-Computational_Algebra.Primes") structure Cancel_Ennreal_Common: sig val dest_sum: term -> term list val dest_summing: term * term list -> term list val find_first: term -> term list -> term list val find_first_t: term list -> term -> term list -> term list val mk_eq: term * term -> term val mk_sum: typ -> term list -> term val norm_ss: simpset val norm_tac: Proof.context -> tactic val simplify_meta_eq: Proof.context -> thm -> thm -> thm val trans_tac: Proof.context -> thm option -> tactic end structure Eq_Ennreal_Cancel: sig val proc: Proof.context -> term -> thm option end structure Le_Ennreal_Cancel: sig val proc: Proof.context -> term -> thm option end structure Less_Ennreal_Cancel: sig val proc: Proof.context -> term -> thm option end instantiation ennreal :: linear_continuum_topology open_ennreal == open :: ennreal set \ bool ### theory "HOL-Library.Extended_Nonnegative_Real" ### 1.926s elapsed time, 11.592s cpu time, 1.028s GC time Loading theory "HOL-Analysis.Sigma_Algebra" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure" via "HOL-Analysis.Nonnegative_Lebesgue_Integration" via "HOL-Analysis.Measure_Space" via "HOL-Analysis.Measurable") locale subset_class fixes \ :: "'a set" and M :: "'a set set" assumes "subset_class \ M" locale semiring_of_sets fixes \ :: "'a set" and M :: "'a set set" assumes "semiring_of_sets \ M" locale ring_of_sets fixes \ :: "'a set" and M :: "'a set set" assumes "ring_of_sets \ M" locale algebra fixes \ :: "'a set" and M :: "'a set set" assumes "algebra \ M" locale sigma_algebra fixes \ :: "'a set" and M :: "'a set set" assumes "sigma_algebra \ M" Proofs for inductive predicate(s) "sigma_setsp" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### Ignoring duplicate rewrite rule: ### finite UNIV \ False Proofs for inductive predicate(s) "smallest_ccdi_setsp" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### theory "HOL-Analysis.Topology_Euclidean_Space" ### 2.503s elapsed time, 15.080s cpu time, 1.040s GC time Loading theory "HOL-Analysis.Convex_Euclidean_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike") Loading theory "HOL-Analysis.Extended_Real_Limits" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit" via "HOL-Analysis.Summation_Tests") Loading theory "HOL-Analysis.Function_Topology" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.T1_Spaces" via "HOL-Analysis.Product_Topology") class euclidean_semiring_gcd = normalization_euclidean_semiring + Gcd + assumes "gcd_eucl": "normalization_euclidean_semiring_class.gcd = gcd" and "lcm_eucl": "normalization_euclidean_semiring_class.lcm = lcm" assumes "Gcd_eucl": "normalization_euclidean_semiring_class.Gcd = Gcd" and "Lcm_eucl": "normalization_euclidean_semiring_class.Lcm = Lcm" locale Dynkin_system fixes \ :: "'a set" and M :: "'a set set" assumes "Dynkin_system \ M" Loading theory "HOL-Analysis.Line_Segment" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.Starlike") instantiation fun :: (type, topological_space) topological_space open_fun == open :: ('a \ 'b) set \ bool instantiation fun :: (countable, metric_space) metric_space dist_fun == dist :: ('a \ 'b) \ ('a \ 'b) \ real uniformity_fun == uniformity :: (('a \ 'b) \ ('a \ 'b)) filter ### Ignoring duplicate rewrite rule: ### interior (ball ?x1 ?e1) \ ball ?x1 ?e1 ### theory "HOL-Analysis.Function_Topology" ### 0.937s elapsed time, 5.628s cpu time, 0.652s GC time Loading theory "HOL-Analysis.Product_Topology" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected" via "HOL-Analysis.T1_Spaces") ### theory "HOL-Analysis.Sigma_Algebra" ### 2.679s elapsed time, 16.128s cpu time, 1.120s GC time Loading theory "HOL-Analysis.Measurable" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure" via "HOL-Analysis.Nonnegative_Lebesgue_Integration" via "HOL-Analysis.Measure_Space") ### theory "HOL-Analysis.Extended_Real_Limits" ### 1.227s elapsed time, 7.376s cpu time, 0.652s GC time Loading theory "HOL-Analysis.Summation_Tests" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative" via "HOL-Analysis.Uniform_Limit") ### theory "HOL-Analysis.Product_Topology" ### 0.297s elapsed time, 1.796s cpu time, 0.000s GC time Loading theory "HOL-Analysis.T1_Spaces" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected") ### theory "HOL-Analysis.Convex_Euclidean_Space" ### 1.309s elapsed time, 7.876s cpu time, 0.652s GC time Loading theory "HOL-Analysis.Ordered_Euclidean_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure" via "HOL-Analysis.Nonnegative_Lebesgue_Integration" via "HOL-Analysis.Borel_Space") signature MEASURABLE = sig val add_del_cong_thm: bool -> thm -> Context.generic -> Context.generic val add_local_cong: thm -> Proof.context -> Proof.context val add_preprocessor: string -> preprocessor -> Context.generic -> Context.generic val cong_thm_attr: attribute context_parser val del_preprocessor: string -> Context.generic -> Context.generic val dest_thm_attr: attribute context_parser val get_all: Context.generic -> thm list val get_cong: Context.generic -> thm list val get_dest: Context.generic -> thm list datatype level = Concrete | Generic val measurable_tac: Proof.context -> thm list -> tactic val measurable_thm_attr: bool * (bool * level) -> attribute val prepare_facts: Proof.context -> thm list -> thm list * Proof.context type preprocessor = thm -> Proof.context -> thm list * Proof.context val simproc: Proof.context -> cterm -> thm option end structure Measurable: MEASURABLE ### theory "HOL-Analysis.T1_Spaces" ### 0.472s elapsed time, 2.824s cpu time, 0.840s GC time Loading theory "HOL-Analysis.Lindelof_Spaces" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Line_Segment" ### 1.180s elapsed time, 7.092s cpu time, 0.840s GC time Loading theory "HOL-Analysis.Starlike" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy" via "HOL-Analysis.Path_Connected") ### theory "HOL-Analysis.Lindelof_Spaces" ### 0.101s elapsed time, 0.608s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Tagged_Division" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration") ### theory "HOL-Analysis.Measurable" ### 0.774s elapsed time, 4.644s cpu time, 0.840s GC time Loading theory "HOL-Analysis.Measure_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure" via "HOL-Analysis.Nonnegative_Lebesgue_Integration") ### theory "HOL-Analysis.Summation_Tests" ### 1.051s elapsed time, 6.296s cpu time, 0.840s GC time Loading theory "HOL-Analysis.Uniform_Limit" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative") locale operative fixes f :: "'a \ 'a \ 'a" (infixl \\<^bold>*\ 70) and z :: "'a" (\\<^bold>1\) and g :: "'b set \ 'a" assumes "operative (\<^bold>*) \<^bold>1 g" locale operative_real fixes f :: "'a \ 'a \ 'a" (infixl \\<^bold>*\ 70) and z :: "'a" (\\<^bold>1\) and g :: "real set \ 'a" assumes "operative_real (\<^bold>*) \<^bold>1 g" class ordered_euclidean_space = Inf + Sup + euclidean_space + abs + inf + sup + ord + assumes "eucl_le": "\x y. (x \ y) = (\i\Basis. x \ i \ y \ i)" assumes "eucl_less_le_not_le": "\x y. (x < y) = (x \ y \ \ y \ x)" assumes "eucl_inf": "\x y. inf x y = (\i\Basis. inf (x \ i) (y \ i) *\<^sub>R i)" assumes "eucl_sup": "\x y. sup x y = (\i\Basis. sup (x \ i) (y \ i) *\<^sub>R i)" assumes "eucl_Inf": "\X. Inf X = (\i\Basis. (INF x\X. x \ i) *\<^sub>R i)" assumes "eucl_Sup": "\X. Sup X = (\i\Basis. (SUP x\X. x \ i) *\<^sub>R i)" assumes "eucl_abs": "\x. \x\ = (\i\Basis. \x \ i\ *\<^sub>R i)" locale sigma_finite_measure fixes M :: "'a measure" assumes "sigma_finite_measure M" ### theory "HOL-Analysis.Tagged_Division" ### 2.660s elapsed time, 13.752s cpu time, 7.508s GC time ### Ignoring duplicate rewrite rule: ### finite UNIV \ False ### theory "HOL-Analysis.Uniform_Limit" ### 2.358s elapsed time, 11.944s cpu time, 7.508s GC time Loading theory "HOL-Analysis.Bounded_Continuous_Function" (required by "HOL-Analysis.Analysis") Loading theory "HOL-Analysis.Bounded_Linear_Function" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics" via "HOL-Analysis.Derivative") instantiation bcontfun :: (topological_space, metric_space) metric_space dist_bcontfun == dist :: 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b \ real uniformity_bcontfun == uniformity :: ('a \\<^sub>C 'b \ 'a \\<^sub>C 'b) filter open_bcontfun == open :: ('a \\<^sub>C 'b) set \ bool locale finite_measure fixes M :: "'a measure" assumes "finite_measure M" instantiation bcontfun :: (topological_space, real_normed_vector) real_vector uminus_bcontfun == uminus :: 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b zero_bcontfun == zero_class.zero :: 'a \\<^sub>C 'b minus_bcontfun == minus :: 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b plus_bcontfun == plus :: 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b scaleR_bcontfun == scaleR :: real \ 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b instantiation bcontfun :: (topological_space, real_normed_vector) real_normed_vector sgn_bcontfun == sgn :: 'a \\<^sub>C 'b \ 'a \\<^sub>C 'b norm_bcontfun == norm :: 'a \\<^sub>C 'b \ real ### theory "HOL-Analysis.Bounded_Continuous_Function" ### 0.660s elapsed time, 3.968s cpu time, 0.480s GC time instantiation measure :: (type) order_bot bot_measure == bot :: 'a measure less_eq_measure == less_eq :: 'a measure \ 'a measure \ bool less_measure == less :: 'a measure \ 'a measure \ bool Proofs for inductive predicate(s) "less_eq_measure" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... instantiation measure :: (type) semilattice_sup sup_measure == sup :: 'a measure \ 'a measure \ 'a measure instantiation measure :: (type) complete_lattice Inf_measure == Inf :: 'a measure set \ 'a measure Sup_measure == Sup :: 'a measure set \ 'a measure top_measure == top :: 'a measure inf_measure == inf :: 'a measure \ 'a measure \ 'a measure ### theory "HOL-Analysis.Measure_Space" ### 4.145s elapsed time, 22.620s cpu time, 7.988s GC time Loading theory "HOL-Analysis.Caratheodory" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure") ### theory "HOL-Analysis.Starlike" ### 4.310s elapsed time, 23.604s cpu time, 7.988s GC time Loading theory "HOL-Analysis.Continuous_Extension" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Retracts") Loading theory "HOL-Analysis.Path_Connected" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space" via "HOL-Analysis.Homotopy") instantiation blinfun :: (real_normed_vector, real_normed_vector) real_normed_vector uminus_blinfun == uminus :: 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b zero_blinfun == zero_class.zero :: 'a \\<^sub>L 'b minus_blinfun == minus :: 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b plus_blinfun == plus :: 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b sgn_blinfun == sgn :: 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b norm_blinfun == norm :: 'a \\<^sub>L 'b \ real scaleR_blinfun == scaleR :: real \ 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b dist_blinfun == dist :: 'a \\<^sub>L 'b \ 'a \\<^sub>L 'b \ real uniformity_blinfun == uniformity :: ('a \\<^sub>L 'b \ 'a \\<^sub>L 'b) filter open_blinfun == open :: ('a \\<^sub>L 'b) set \ bool ### theory "HOL-Analysis.Continuous_Extension" ### 0.248s elapsed time, 1.444s cpu time, 0.000s GC time locale bounded_bilinear fixes prod :: "'a \ 'b \ 'c" (infixl \**\ 70) assumes "bounded_bilinear (**)" ### theory "HOL-Analysis.Caratheodory" ### 0.646s elapsed time, 3.800s cpu time, 0.784s GC time ### theory "HOL-Computational_Algebra.Euclidean_Algorithm" ### 9.416s elapsed time, 54.240s cpu time, 11.304s GC time Loading theory "HOL-Computational_Algebra.Primes" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Jordan_Curve" via "HOL-Analysis.Arcwise_Connected") Loading theory "HOL-Computational_Algebra.Formal_Power_Series" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.FPS_Convergence") instantiation prod :: (abs, abs) abs abs_prod == abs :: 'a \ 'b \ 'a \ 'b instantiation vec :: (ordered_euclidean_space, finite) ordered_euclidean_space abs_vec == abs :: ('a, 'b) vec \ ('a, 'b) vec inf_vec == inf :: ('a, 'b) vec \ ('a, 'b) vec \ ('a, 'b) vec sup_vec == sup :: ('a, 'b) vec \ ('a, 'b) vec \ ('a, 'b) vec Inf_vec == Inf :: ('a, 'b) vec set \ ('a, 'b) vec Sup_vec == Sup :: ('a, 'b) vec set \ ('a, 'b) vec locale bounded_bilinear fixes prod :: "'a \ 'b \ 'c" (infixl \**\ 70) assumes "bounded_bilinear (**)" ### theory "HOL-Analysis.Ordered_Euclidean_Space" ### 5.793s elapsed time, 32.436s cpu time, 9.612s GC time ### theory "HOL-Computational_Algebra.Primes" ### 0.284s elapsed time, 1.716s cpu time, 0.000s GC time ### theory "HOL-Analysis.Bounded_Linear_Function" ### 2.654s elapsed time, 15.812s cpu time, 1.264s GC time Loading theory "HOL-Analysis.Derivative" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental" via "HOL-Analysis.Complex_Analysis_Basics") instantiation fps :: (zero) zero zero_fps == zero_class.zero :: 'a fps instantiation fps :: ({one,zero}) one one_fps == one_class.one :: 'a fps instantiation fps :: (plus) plus plus_fps == plus :: 'a fps \ 'a fps \ 'a fps instantiation fps :: (minus) minus minus_fps == minus :: 'a fps \ 'a fps \ 'a fps instantiation fps :: (uminus) uminus uminus_fps == uminus :: 'a fps \ 'a fps instantiation fps :: ({comm_monoid_add,times}) times times_fps == times :: 'a fps \ 'a fps \ 'a fps ### Introduced fixed type variable(s): 'd, 'e, 'f in "f__" or "g__" ### Introduced fixed type variable(s): 'h in "A__" instantiation fps :: (zero) unit_factor unit_factor_fps == unit_factor :: 'a fps \ 'a fps ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ (0::?'a1) \ ### (0::?'a1) \ ?a1 \ ?b1 \ (0::?'a1) \ ### ?a1 \ (0::?'a1) \ (0::?'a1) \ ?b1 ### Ignoring duplicate rewrite rule: ### p.dim UNIV \ card Basis_pair ### Ignoring duplicate rewrite rule: ### vs1.dim UNIV \ card B1 ### Ignoring duplicate rewrite rule: ### vs2.dim UNIV \ card B2 instantiation fps :: ({minus,zero}) dist dist_fps == dist :: 'a fps \ 'a fps \ real instantiation fps :: (group_add) metric_space uniformity_fps == uniformity :: ('a fps \ 'a fps) filter open_fps == open :: 'a fps set \ bool ### theory "HOL-Analysis.Path_Connected" ### 2.137s elapsed time, 12.812s cpu time, 1.648s GC time Loading theory "HOL-Analysis.Arcwise_Connected" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Jordan_Curve") Loading theory "HOL-Analysis.Homotopy" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space") Loading theory "HOL-Analysis.Locally" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Abstract_Euclidean_Space") Found termination order: "(\p. size (snd (snd p))) <*mlex*> {}" ### theory "HOL-Analysis.Locally" ### 0.213s elapsed time, 1.284s cpu time, 0.000s GC time Found termination order: "(\p. size (snd (snd p))) <*mlex*> {}" instantiation fps :: ({inverse,comm_monoid_add,times,uminus}) inverse inverse_fps == inverse :: 'a fps \ 'a fps divide_fps == divide :: 'a fps \ 'a fps \ 'a fps instantiation fps :: ({inverse,uminus,comm_semiring_1}) modulo modulo_fps == modulo :: 'a fps \ 'a fps \ 'a fps instantiation fps :: (field) normalization_semidom normalize_fps == normalize :: 'a fps \ 'a fps instantiation fps :: (field) euclidean_ring_cancel euclidean_size_fps == euclidean_size :: 'a fps \ nat instantiation fps :: (field) euclidean_ring_gcd Gcd_fps == Gcd :: 'a fps set \ 'a fps Lcm_fps == Lcm :: 'a fps set \ 'a fps gcd_fps == gcd :: 'a fps \ 'a fps \ 'a fps lcm_fps == lcm :: 'a fps \ 'a fps \ 'a fps ### Introduced fixed type variable(s): 'a in "P__" Found termination order: "(\p. size (fst p)) <*mlex*> {}" ### theory "HOL-Analysis.Derivative" ### 2.536s elapsed time, 15.228s cpu time, 1.660s GC time Loading theory "HOL-Analysis.Borel_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure" via "HOL-Analysis.Nonnegative_Lebesgue_Integration") Loading theory "HOL-Analysis.Cartesian_Euclidean_Space" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Equivalence_Lebesgue_Henstock_Integration") Loading theory "HOL-Analysis.Complex_Analysis_Basics" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Complex_Transcendental") ### theory "HOL-Analysis.Arcwise_Connected" ### 1.761s elapsed time, 10.548s cpu time, 0.796s GC time Loading theory "HOL-Analysis.Lipschitz" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Multivariate_Analysis") bundle lipschitz_syntax bundle no_lipschitz_syntax ### theory "HOL-Analysis.Cartesian_Euclidean_Space" ### 0.385s elapsed time, 2.296s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Cross3" (required by "HOL-Analysis.Analysis") locale Retracts fixes s :: "'a set" and h :: "'a \ 'b" and t :: "'b set" and k :: "'b \ 'a" assumes "Retracts s h t k" Found termination order: "(\p. size (snd p)) <*mlex*> {}" Found termination order: "(\p. size (snd (snd p))) <*mlex*> {}" ### theory "HOL-Analysis.Lipschitz" ### 0.705s elapsed time, 4.212s cpu time, 0.864s GC time Loading theory "HOL-Analysis.Polytope" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Homotopy" ### 2.772s elapsed time, 16.600s cpu time, 1.660s GC time Loading theory "HOL-Analysis.Homeomorphism" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Retracts" via "HOL-Analysis.Brouwer_Fixpoint") ### theory "HOL-Analysis.Complex_Analysis_Basics" ### 1.483s elapsed time, 8.876s cpu time, 0.864s GC time Loading theory "HOL-Analysis.Complex_Transcendental" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem") bundle fps_notation ### theory "HOL-Computational_Algebra.Formal_Power_Series" ### 4.615s elapsed time, 27.700s cpu time, 2.524s GC time Loading theory "HOL-Analysis.Abstract_Euclidean_Space" (required by "HOL-Analysis.Analysis") bundle cross3_syntax ### theory "HOL-Analysis.Homeomorphism" ### 0.711s elapsed time, 4.264s cpu time, 0.948s GC time Loading theory "HOL-Analysis.Brouwer_Fixpoint" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Retracts") ### theory "HOL-Analysis.Abstract_Euclidean_Space" ### 0.494s elapsed time, 2.960s cpu time, 0.948s GC time Loading theory "HOL-Analysis.Weierstrass_Theorems" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem") bundle no_cross3_syntax instantiation complex :: ln ln_complex == ln :: complex \ complex ### theory "HOL-Analysis.Polytope" ### 1.711s elapsed time, 10.288s cpu time, 0.948s GC time ### theory "HOL-Analysis.Borel_Space" ### 2.798s elapsed time, 16.780s cpu time, 1.812s GC time Loading theory "HOL-Analysis.Nonnegative_Lebesgue_Integration" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure" via "HOL-Analysis.Binary_Product_Measure") Loading theory "HOL-Analysis.Regularity" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure") locale function_ring_on fixes R :: "('a \ real) set" and S :: "'a set" assumes "function_ring_on R S" Proofs for inductive predicate(s) "real_polynomial_function" locale kuhn_simplex fixes p :: "nat" and n :: "nat" and base :: "nat \ nat" and upd :: "nat \ nat" and s :: "(nat \ nat) set" assumes "kuhn_simplex p n base upd s" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... locale kuhn_simplex_pair fixes p :: "nat" and n :: "nat" and b_s :: "nat \ nat" and u_s :: "nat \ nat" and s :: "(nat \ nat) set" and b_t :: "nat \ nat" and u_t :: "nat \ nat" and t :: "(nat \ nat) set" assumes "kuhn_simplex_pair p n b_s u_s s b_t u_t t" Proofs for inductive predicate(s) "ksimplex" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### theory "HOL-Analysis.Weierstrass_Theorems" ### 3.192s elapsed time, 16.636s cpu time, 10.088s GC time ### theory "HOL-Analysis.Regularity" ### 2.869s elapsed time, 14.692s cpu time, 10.088s GC time ### theory "HOL-Analysis.Brouwer_Fixpoint" ### 3.552s elapsed time, 18.812s cpu time, 10.088s GC time Loading theory "HOL-Analysis.Fashoda_Theorem" (required by "HOL-Analysis.Analysis") Loading theory "HOL-Analysis.Retracts" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem") ### theory "HOL-Analysis.Complex_Transcendental" ### 4.341s elapsed time, 23.552s cpu time, 11.036s GC time Loading theory "HOL-Analysis.Generalised_Binomial_Theorem" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.FPS_Convergence") Loading theory "HOL-Analysis.Infinite_Products" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Cross3" ### 5.603s elapsed time, 31.112s cpu time, 11.900s GC time Loading theory "HOL-Analysis.Multivariate_Analysis" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Generalised_Binomial_Theorem" ### 0.081s elapsed time, 0.488s cpu time, 0.000s GC time ### theory "HOL-Analysis.Fashoda_Theorem" ### 0.638s elapsed time, 3.908s cpu time, 0.924s GC time ### theory "HOL-Analysis.Infinite_Products" ### 0.721s elapsed time, 4.408s cpu time, 0.924s GC time ### theory "HOL-Analysis.Nonnegative_Lebesgue_Integration" ### 4.173s elapsed time, 22.620s cpu time, 11.012s GC time Loading theory "HOL-Analysis.Binary_Product_Measure" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Finite_Product_Measure") locale pair_sigma_finite fixes M1 :: "'a measure" and M2 :: "'b measure" assumes "pair_sigma_finite M1 M2" ### theory "HOL-Analysis.Retracts" ### 1.688s elapsed time, 10.152s cpu time, 0.924s GC time ### theory "HOL-Analysis.Multivariate_Analysis" ### 1.791s elapsed time, 10.556s cpu time, 1.864s GC time ### theory "HOL-Analysis.Binary_Product_Measure" ### 0.905s elapsed time, 5.024s cpu time, 0.940s GC time Loading theory "HOL-Analysis.Embed_Measure" (required by "HOL-Analysis.Analysis") Loading theory "HOL-Analysis.Finite_Product_Measure" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure") ### theory "HOL-Analysis.Embed_Measure" ### 0.208s elapsed time, 1.216s cpu time, 0.000s GC time locale product_sigma_finite fixes M :: "'i \ 'a measure" assumes "product_sigma_finite M" locale finite_product_sigma_finite fixes M :: "'i \ 'a measure" and I :: "'i set" assumes "finite_product_sigma_finite M I" ### theory "HOL-Analysis.Finite_Product_Measure" ### 1.176s elapsed time, 7.092s cpu time, 0.812s GC time Loading theory "HOL-Analysis.Bochner_Integration" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure" via "HOL-Analysis.Complete_Measure") Proofs for inductive predicate(s) "simple_bochner_integrable" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... Proofs for inductive predicate(s) "has_bochner_integral" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 Proofs for inductive predicate(s) "integrable" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Bochner_Integration" ### 1.780s elapsed time, 10.640s cpu time, 0.840s GC time Loading theory "HOL-Analysis.Complete_Measure" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration" via "HOL-Analysis.Lebesgue_Measure") Loading theory "HOL-Analysis.Radon_Nikodym" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Equivalence_Lebesgue_Henstock_Integration" via "HOL-Analysis.Set_Integral") locale complete_measure fixes M :: "'a measure" assumes "complete_measure M" locale semifinite_measure fixes M :: "'a measure" assumes "semifinite_measure M" locale locally_determined_measure fixes M :: "'a measure" assumes "locally_determined_measure M" locale cld_measure fixes M :: "'a measure" assumes "cld_measure M" ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Radon_Nikodym" ### 0.314s elapsed time, 1.892s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Set_Integral" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Equivalence_Lebesgue_Henstock_Integration") ### theory "HOL-Analysis.Complete_Measure" ### 0.722s elapsed time, 4.412s cpu time, 0.820s GC time Loading theory "HOL-Analysis.Lebesgue_Measure" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem" via "HOL-Analysis.Henstock_Kurzweil_Integration") ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Set_Integral" ### 0.721s elapsed time, 4.428s cpu time, 0.820s GC time Loading theory "HOL-Analysis.Infinite_Set_Sum" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Infinite_Set_Sum" ### 0.497s elapsed time, 2.988s cpu time, 0.000s GC time ### Ignoring duplicate rewrite rule: ### ?X1 derived_set_of (topspace ?X1 \ ?S1) \ ### ?X1 derived_set_of ?S1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 Proofs for inductive predicate(s) "fsigma" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... Proofs for inductive predicate(s) "gdelta" Proving monotonicity ... Proving the introduction rules ... Proving the elimination rules ... Proving the induction rule ... Proving the simplification rules ... ### theory "HOL-Analysis.Lebesgue_Measure" ### 1.905s elapsed time, 10.720s cpu time, 0.856s GC time Loading theory "HOL-Analysis.Henstock_Kurzweil_Integration" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings" via "HOL-Analysis.Cauchy_Integral_Theorem") ### Rule already declared as introduction (intro) ### \finite ?S; Ball ?S open\ ### \ open (\ ?S) ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Introduced fixed type variable(s): 'b in "Q__" or "f__" ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Henstock_Kurzweil_Integration" ### 3.345s elapsed time, 17.532s cpu time, 1.612s GC time Loading theory "HOL-Analysis.Cauchy_Integral_Theorem" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Conformal_Mappings") Loading theory "HOL-Analysis.Equivalence_Lebesgue_Henstock_Integration" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function") Loading theory "HOL-Analysis.Integral_Test" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function" via "HOL-Analysis.Harmonic_Numbers") locale antimono_fun_sum_integral_diff fixes f :: "real \ real" assumes "antimono_fun_sum_integral_diff f" ### theory "HOL-Analysis.Integral_Test" ### 0.279s elapsed time, 1.608s cpu time, 1.008s GC time Loading theory "HOL-Analysis.Harmonic_Numbers" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function") ### Introduced fixed type variable(s): 'd, 'e, 'f in "f__" or "g__" ### Introduced fixed type variable(s): 'd, 'e in "X__" or "f__" or "g__" ### Introduced fixed type variable(s): 'd, 'e in "f__" ### Introduced fixed type variable(s): 'd in "X__" ### Introduced fixed type variable(s): 'd, 'e, 'f in "R__" or "S__" ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Introduced fixed type variable(s): 'd, 'e in "R__" ### Ignoring duplicate rewrite rule: ### mset (map ?f1 ?xs1) \ image_mset ?f1 (mset ?xs1) ### Ignoring duplicate rewrite rule: ### mset (map ?f1 ?xs1) \ image_mset ?f1 (mset ?xs1) ### Introduced fixed type variable(s): 'd in "z__" ### Introduced fixed type variable(s): 'd in "P__" ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Metis: Unused theorems: "Lattices.semilattice_inf_class.inf.assoc", "Lattices.semilattice_inf_class.inf.orderE" ### Metis: Unused theorems: "Lattices.semilattice_inf_class.inf.assoc", "Lattices.semilattice_inf_class.inf.orderE" ### theory "HOL-Analysis.Harmonic_Numbers" ### 0.721s elapsed time, 4.232s cpu time, 0.000s GC time ### Metis: Unused theorems: "Fun.eq_id_iff" ### Metis: Unused theorems: "Fun.eq_id_iff" locale Chain fixes x0 :: "'a" and At :: "'a \ nat \ bool" and Follows :: "'a \ 'a \ bool" assumes "Chain x0 At Follows" consts f :: "nat \ 'a" ### theory "HOL-Analysis.Equivalence_Lebesgue_Henstock_Integration" ### 2.851s elapsed time, 15.976s cpu time, 1.728s GC time Loading theory "HOL-Analysis.Further_Topology" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Jordan_Curve") Loading theory "HOL-Analysis.Improper_Integral" (required by "HOL-Analysis.Analysis") Loading theory "HOL-Analysis.Interval_Integral" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Lebesgue_Integral_Substitution") ### theory "HOL-Analysis.Improper_Integral" ### 0.442s elapsed time, 2.624s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Equivalence_Measurable_On_Borel" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Interval_Integral" ### 0.589s elapsed time, 3.508s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Lebesgue_Integral_Substitution" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume") ### theory "HOL-Analysis.Lebesgue_Integral_Substitution" ### 0.255s elapsed time, 1.556s cpu time, 0.908s GC time ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Equivalence_Measurable_On_Borel" ### 0.863s elapsed time, 5.212s cpu time, 0.908s GC time ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Cauchy_Integral_Theorem" ### 4.596s elapsed time, 26.160s cpu time, 2.636s GC time Loading theory "HOL-Analysis.Conformal_Mappings" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume" via "HOL-Analysis.Gamma_Function") ### theory "HOL-Analysis.Further_Topology" ### 3.176s elapsed time, 18.356s cpu time, 1.748s GC time Loading theory "HOL-Analysis.Jordan_Curve" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Conformal_Mappings" ### 1.716s elapsed time, 9.616s cpu time, 0.840s GC time Loading theory "HOL-Analysis.FPS_Convergence" (required by "HOL-Analysis.Analysis") Loading theory "HOL-Analysis.Great_Picard" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Winding_Numbers" via "HOL-Analysis.Riemann_Mapping") Loading theory "HOL-Analysis.Gamma_Function" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Ball_Volume") ### theory "HOL-Analysis.Jordan_Curve" ### 1.042s elapsed time, 6.204s cpu time, 0.900s GC time ### theory "HOL-Analysis.Great_Picard" ### 0.988s elapsed time, 6.016s cpu time, 0.900s GC time Loading theory "HOL-Analysis.Riemann_Mapping" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Winding_Numbers") locale SC_Chain fixes S :: "complex set" assumes "SC_Chain S" locale SC_Chain fixes S :: "complex set" assumes "SC_Chain S" locale SC_Chain fixes S :: "complex set" assumes "SC_Chain S" ### theory "HOL-Analysis.Riemann_Mapping" ### 0.342s elapsed time, 2.044s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Winding_Numbers" (required by "HOL-Analysis.Analysis") ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.FPS_Convergence" ### 2.051s elapsed time, 12.468s cpu time, 1.792s GC time ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Winding_Numbers" ### 1.006s elapsed time, 6.116s cpu time, 0.892s GC time ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) class Gamma = complete_space + real_normed_field + fixes rGamma :: "'a \ 'a" assumes "rGamma_eq_zero_iff_aux": "\z. (rGamma z = (0::'a)) = (\n. z = - of_nat n)" assumes "differentiable_rGamma_aux1": "\z. (\n. z \ - of_nat n) \ let d = (THE d. (\n. \k d) - euler_mascheroni *\<^sub>R (1::'a) in ((\y. (rGamma y - rGamma z + rGamma z * d * (y - z)) /\<^sub>R norm (y - z)) \ (0::'a)) (at z)" assumes "differentiable_rGamma_aux2": "\n. let z = - of_nat n in ((\y. (rGamma y - rGamma z - (- (1::'a)) ^ n * prod of_nat {1..n} * (y - z)) /\<^sub>R norm (y - z)) \ (0::'a)) (at z)" assumes "rGamma_series_aux": "\z. (\n. z \ - of_nat n) \ let fact' = \n. prod of_nat {1..n}; exp = \x. THE e. (\n. \kR fact k) \ e; pochhammer' = \a n. \n = 0..n. a + of_nat n in (\n. pochhammer' z n / (fact' n * exp (z * ln (real n) *\<^sub>R (1::'a)))) \ rGamma z" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) instantiation complex :: Gamma rGamma_complex == rGamma :: complex \ complex ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 instantiation real :: Gamma rGamma_real == rGamma :: real \ real ### theory "HOL-Analysis.Gamma_Function" ### 4.227s elapsed time, 25.424s cpu time, 2.524s GC time Loading theory "HOL-Analysis.Ball_Volume" (required by "HOL-Analysis.Analysis") ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### theory "HOL-Analysis.Ball_Volume" ### 0.708s elapsed time, 4.324s cpu time, 0.728s GC time Loading theory "HOL-Analysis.Vitali_Covering_Theorem" (required by "HOL-Analysis.Analysis" via "HOL-Analysis.Change_Of_Vars") ### theory "HOL-Analysis.Vitali_Covering_Theorem" ### 0.633s elapsed time, 3.756s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Change_Of_Vars" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Change_Of_Vars" ### 1.243s elapsed time, 7.412s cpu time, 0.792s GC time Loading theory "HOL-Analysis.Simplex_Content" (required by "HOL-Analysis.Analysis") ### theory "HOL-Analysis.Simplex_Content" ### 0.099s elapsed time, 0.568s cpu time, 0.000s GC time Loading theory "HOL-Analysis.Analysis" ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### theory "HOL-Analysis.Analysis" ### 5.333s elapsed time, 30.508s cpu time, 2.920s GC time ### Ignoring duplicate rewrite rule: ### inverse_permutation_of_list [] ?y \ ?y ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### convex (convex hull ?s1) \ True ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Metis: Unused theorems: "Cartesian_Space.matrix_vector_mul_1", "Cartesian_Space.matrix_vector_mul_3" ### Metis: Unused theorems: "Permutations.permutation_swap_id" ### Metis: Unused theorems: "Finite_Set.finite_class.finite_code" ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Rule already declared as elimination (elim) ### \?b dvd ?a; \k. ?a = ?b * k \ ?P\ ### \ ?P ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### 0 < dist ?x1 ?y1 \ ?x1 \ ?y1 ### Ignoring duplicate introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Rule already declared as introduction (intro) ### countable ?A \ countable (?f ` ?A) ### Rule already declared as introduction (intro) ### \countable ?I; ### \i. i \ ?I \ countable (?A i)\ ### \ countable (Sigma ?I ?A) ### Rule already declared as introduction (intro) ### \countable ?I; ### \i. i \ ?I \ countable (?A i)\ ### \ countable (\ (?A ` ?I)) ### Rule already declared as introduction (intro) ### ?P ?x \ \x. ?P x ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### closure ?S1 = {} \ ?S1 = {} ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) "True" :: "bool" "True" :: "bool" "- \" :: "ereal" "\" :: "ereal" ### Ignoring duplicate introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Ignoring duplicate introduction (intro) ### ((\x. ?k) \ ?k) ?F "ereal (13 / 4)" :: "ereal" ### Ignoring duplicate rewrite rule: ### sup ?x1 (- ?x1) \ top ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### (\x y. ?A x y \ ?B (?f x) (?g y)) \ ### rel_fun ?A ?B ?f ?g ### Ignoring duplicate rewrite rule: ### dim UNIV \ DIM(?'a1) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Rule already declared as introduction (intro) ### (\x y. ?A x y \ ?B (?f x) (?g y)) \ ### rel_fun ?A ?B ?f ?g ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### cbox ?a1 ?a1 \ {?a1} ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Rule already declared as introduction (intro) ### range ?A \ M \ \ (range ?A) \ M ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g ### Ignoring duplicate rewrite rule: ### (\i. ### i \ Basis \ ### ?a1 \ i \ ?b1 \ i) \ ### clamp ?a1 ?b1 ?x1 \ cbox ?a1 ?b1 \ True ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 < (0::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < (0::?'a1) \ ### ?a1 < (0::?'a1) \ (0::?'a1) < ?b1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### subspace (span ?S1) \ True ### Ignoring duplicate introduction (intro) ### ?a \ ?A \ ?a \ sigma_sets ?sp ?A ### Rule already declared as introduction (intro) ### \?a \ generated_ring; ?b \ generated_ring; ### ?a \ ?b = {}\ ### \ ?a \ ?b \ generated_ring ### Ignoring duplicate rewrite rule: ### topspace (topology_generated_by ?S1) \ \ ?S1 ### Ignoring duplicate rewrite rule: ### topspace (product_topology ?T1 ?I1) \ ### \\<^sub>E i\?I1. topspace (?T1 i) ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### 0 < dist ?x1 ?y1 \ ?x1 \ ?y1 ### Ignoring duplicate rewrite rule: ### 0 < dist ?x1 ?y1 \ ?x1 \ ?y1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### interior {?a1..} \ {?a1<..} ### Ignoring duplicate rewrite rule: ### interior {..?a1} \ {.. {.. box ?a1 ?b1 ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a \ ?b \ sets ?M ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Rule already declared as introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### quotient_map (prod_topology ?X1 ?Y1) ?X1 fst \ ### topspace ?Y1 = {} \ topspace ?X1 = {} ### Ignoring duplicate rewrite rule: ### quotient_map (prod_topology ?X1 ?Y1) ?Y1 snd \ ### topspace ?X1 = {} \ topspace ?Y1 = {} ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Introduced fixed type variable(s): 'b in "Sa__" or "T__" or "xa__" ### Introduced fixed type variable(s): 'c, 'd in "x__" or "y__" ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Rule already declared as introduction (intro) ### ?x \ UNIV ### Rule already declared as introduction (intro) ### ?x \ UNIV Failure node Enter MATCH Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay. :001 (:000 (?T55 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay)) \\<^sup>? ?T55 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (?T55 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az. :001 (:000 (?\55 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az)) \\<^sup>? \x. ?\55 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (?\55 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az. :001 (:000 (?T56 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az)) \\<^sup>? ?T56 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (?T56 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba. :001 (:000 (?T57 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba)) \\<^sup>? ?T57 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (?T57 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba. :001 (:000 (?\56 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba)) \\<^sup>? \x. ?\56 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (?\56 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb. :001 (:000 (?T58 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb)) \\<^sup>? ?T58 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (?T58 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb. :001 (:000 (?\57 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb)) \\<^sup>? \x. ?\57 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (?\57 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a - ?b \ sets ?M \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc. :001 (:000 (?T59 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc)) \\<^sup>? ?T59 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (?T59 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc. :001 (:000 (?\58 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc)) \\<^sup>? \x. ?\58 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (?\58 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd. :001 (:000 (?\59 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd)) \\<^sup>? \x. ?\59 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (?\59 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd. :001 (:000 (?T60 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd)) \\<^sup>? ?T60 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (?T60 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be. :001 (:000 (?\60 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be)) \\<^sup>? \x. ?\60 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (?\60 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be. :001 (:000 (?T61 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be)) \\<^sup>? ?T61 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (?T61 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf. :001 (:000 (?\61 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf)) \\<^sup>? \x. ?\61 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (?\61 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf. :001 (:000 (?T62 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf)) \\<^sup>? ?T62 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (?T62 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg. :001 (:000 (?\62 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg)) \\<^sup>? \x. ?\62 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (?\62 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg. :001 (:000 (?T63 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg)) \\<^sup>? ?T63 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (\bg. :001 (:000 (?T63 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh. :001 (:000 (?\63 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh)) \\<^sup>? \x. ?\63 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (\bg. :001 (:000 (?\63 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh. :001 (:000 (?T64 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh)) \\<^sup>? ?T64 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (\bg. :001 (:000 (\bh. :001 (:000 (?T64 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node ### Unification bound exceeded Failure node Enter MATCH ### Ignoring duplicate rewrite rule: ### of_nat (?m1 ^ ?n1) \ of_nat ?m1 ^ ?n1 \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax. :001 (:000 (?T53 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax)) \\<^sup>? ?T53 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (?T53 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \x a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi. :001 (:000 (?\64 a b c d e f g h i j k l m n o p q r s t u v w y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi)) \\<^sup>? \x. ?\64 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (\bg. :001 (:000 (\bh. :001 (:000 (?\64 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node ### Unification bound exceeded ### Ignoring duplicate rewrite rule: ### of_nat (?m1 ^ ?n1) \ of_nat ?m1 ^ ?n1 \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay. :001 (:000 (?T54 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay)) \\<^sup>? ?T54 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (?T54 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az. :001 (:000 (?T55 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az)) \\<^sup>? ?T55 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (?T55 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba. :001 (:000 (?T56 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba)) \\<^sup>? ?T56 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (?T56 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb. :001 (:000 (?T57 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb)) \\<^sup>? ?T57 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (?T57 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc. :001 (:000 (?T58 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc)) \\<^sup>? ?T58 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (?T58 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd. :001 (:000 (?T59 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd)) \\<^sup>? ?T59 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (?T59 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be. :001 (:000 (?T60 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be)) \\<^sup>? ?T60 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (?T60 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf. :001 (:000 (?T61 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf)) \\<^sup>? ?T61 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (?T61 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg. :001 (:000 (?T62 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg)) \\<^sup>? ?T62 (:000 (\a. :001 (:000 (\b. :001 (:000 (\c. :001 (:000 (\d. :001 (:000 (\e. :001 (:000 (\f. :001 (:000 (\g. :001 (:000 (\h. :001 (:000 (\i. :001 (:000 (\j. :001 (:000 (\k. :001 (:000 (\l. :001 (:000 (\m. :001 (:000 (\n. :001 (:000 (\o. :001 (:000 (\p. :001 (:000 (\q. :001 (:000 (\r. :001 (:000 (\s. :001 (:000 (\t. :001 (:000 (\u. :001 (:000 (\v. :001 (:000 (\w. :001 (:000 (\x. :001 (:000 (\y. :001 (:000 (\z. :001 (:000 (\aa. :001 (:000 (\ab. :001 (:000 (\ac. :001 (:000 (\ad. :001 (:000 (\ae. :001 (:000 (\af. :001 (:000 (\ag. :001 (:000 (\ah. :001 (:000 (\ai. :001 (:000 (\aj. :001 (:000 (\ak. :001 (:000 (\al. :001 (:000 (\am. :001 (:000 (\an. :001 (:000 (\ao. :001 (:000 (\ap. :001 (:000 (\aq. :001 (:000 (\ar. :001 (:000 (\as. :001 (:000 (\at. :001 (:000 (\au. :001 (:000 (\av. :001 (:000 (\aw. :001 (:000 (\ax. :001 (:000 (\ay. :001 (:000 (\az. :001 (:000 (\ba. :001 (:000 (\bb. :001 (:000 (\bc. :001 (:000 (\bd. :001 (:000 (\be. :001 (:000 (\bf. :001 (:000 (\bg. :001 (:000 (?T62 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Failure node ### Unification bound exceeded ### Rule already declared as introduction (intro) ### \?a \ M; ?b \ M\ \ ?a - ?b \ M ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### \finite ?A1; ?A1 \ {}\ ### \ ?x1 < Min ?A1 \ \a\?A1. ?x1 < a ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### aff_dim UNIV \ int DIM(?'n1) ### Ignoring duplicate rewrite rule: ### enn2ereal top \ \ ### Rule already declared as safe introduction (intro!) ### uniform_limit {} ?f ?g ?F ### Ignoring duplicate rewrite rule: ### rel_interior {} \ {} ### Ignoring duplicate rewrite rule: ### rel_interior {} \ {} ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### affine hull (convex hull ?S1) \ affine hull ?S1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### ?x1 = (?u1 / ?v1) *\<^sub>R ?a1 \ ### if ?v1 = 0 then ?x1 = (0::?'a1) else ?v1 *\<^sub>R ?x1 = ?u1 *\<^sub>R ?a1 ### Rewrite rule not in simpset: ### numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ numeral ?w1 * ?c1 ### else numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ - numeral ?w1 * ?c1 ### else - numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < numeral ?w1 * ?c1 ### else numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < - numeral ?w1 * ?c1 ### else - numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 < numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 < - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then numeral ?w1 * ?c1 = ?b1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then - numeral ?w1 * ?c1 = ?b1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = numeral ?w1 * ?c1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = - numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = - numeral ?w1 * ?c1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) \ ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 \ ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 \ ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 \ (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 \ ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 \ ?b1 \ ?a1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) < ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 < ?b1 \ ?a1 < (0::?'a1) \ ?b1 < ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 < (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 < ?b1 \ ?a1 = (0::?'a1) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### aff_dim UNIV \ int DIM(?'n1) ### Ignoring duplicate rewrite rule: ### aff_dim (affine hull ?S1) \ aff_dim ?S1 ### Ignoring duplicate rewrite rule: ### ?a1 \ (0::?'a1) \ ### aff_dim {x. ?a1 \ x = ?r1} \ int (DIM(?'a1) - 1) ### Ignoring duplicate rewrite rule: ### ?a1 \ (0::?'a1) \ ### aff_dim {x. ?a1 \ x = ?r1} \ int (DIM(?'a1) - 1) ### Ignoring duplicate rewrite rule: ### affine_dependent {?a1, ?b1} \ False ### Ignoring duplicate rewrite rule: ### aff_dim UNIV \ int DIM(?'n1) ### Metis: Unused theorems: "local.sumSS'_2" ### Ignoring duplicate rewrite rule: ### dim (span ?S1) \ dim ?S1 ### Metis: Unused theorems: "local.sumSS'_1" ### Rule already declared as introduction (intro) ### \?b = ?f ?x; ?x \ ?A\ \ ?b \ ?f ` ?A ### Metis: Unused theorems: "local.yl" ### Metis: Unused theorems: "local.xl" ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### 0 \ setdist ?s1 ?t1 \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Rule already declared as introduction (intro) ### ?A ` ?X \ M \ \ (?A ` ?X) \ M ### Metis: Unused theorems: "Line_Segment.midpoint_eq_endpoint_2" ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### \?a \ generated_ring; ?b \ generated_ring\ ### \ ?a \ ?b \ generated_ring ### Rule already declared as introduction (intro) ### \finite ?X; ?X \ generated_ring\ ### \ \ ?X \ generated_ring ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Rule already declared as introduction (intro) ### \?a \ generated_ring; ?b \ generated_ring\ ### \ ?a \ ?b \ generated_ring ### Rule already declared as introduction (intro) ### \finite ?X; ?X \ generated_ring\ ### \ \ ?X \ generated_ring ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Rule already declared as introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Rule already declared as introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Rule already declared as introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ereal (?f x)) \ ereal ?x) ?F ### Rule already declared as introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. - ?f x) \ - ?x) ?F ### Rule already declared as introduction (intro) ### \\?c\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Rule already declared as introduction (intro) ### \?x \ 0; (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Rule already declared as introduction (intro) ### \?y \ - \; ?x \ - \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Rule already declared as introduction (intro) ### \\?y\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Rule already declared as introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ennreal (?f x)) \ ennreal ?x) ?F ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if ?a1 = k then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if ?a1 = k then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### pathfinish ?g1.1 = pathstart ?g2.1 \ ### path (?g1.1 +++ ?g2.1) \ path ?g1.1 \ path ?g2.1 ### Ignoring duplicate rewrite rule: ### pathfinish ?g1.1 = pathstart ?g2.1 \ ### path (?g1.1 +++ ?g2.1) \ path ?g1.1 \ path ?g2.1 ### Ignoring duplicate rewrite rule: ### pathfinish ?g1.1 = pathstart ?g2.1 \ ### path (?g1.1 +++ ?g2.1) \ path ?g1.1 \ path ?g2.1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Metis: Unused theorems: "Real.less_eq_real_def" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate safe introduction (intro!) ### convex {?a..} ### Ignoring duplicate safe introduction (intro!) ### convex {..?b} ### Ignoring duplicate safe introduction (intro!) ### convex {?a<..} ### Ignoring duplicate safe introduction (intro!) ### convex {..x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### path_connected (path_component_set ?s1 ?x1) \ True ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### path_connected {} \ True ### Ignoring duplicate rewrite rule: ### path_connected {?a1} \ True ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### connected_component_set UNIV ?x1 \ UNIV ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### convex (ball ?x1 ?e1) \ True ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate safe introduction (intro!) ### \continuous_map ?X ?X' ?f; continuous_map ?X' ?X'' ?g\ ### \ continuous_map ?X ?X'' (?g \ ?f) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### homotopic_with ?P1 ?X1 ?Y1 ?f1 ?f1 \ ### continuous_map ?X1 ?Y1 ?f1 \ ?P1 ?f1 ### Metis: Unused theorems: "Convex_Euclidean_Space.closest_point_exists_2" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Metis: Unused theorems: "Path_Connected.path_image_reversepath" ### Metis: Unused theorems: "Orderings.linorder_class.not_le" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Metis: Unused theorems: "Homotopy.homotopic_join_subpaths2", "Homotopy.homotopic_join_subpaths3" ### Metis: Unused theorems: "Homotopy.homotopic_join_subpaths3" ### Metis: Unused theorems: "Homotopy.homotopic_join_subpaths2" ### Metis: Unused theorems: "Homotopy.homotopic_join_subpaths2" ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Metis: Unused theorems: "Cartesian_Space.linear_matrix_vector_mul_eq", "Cartesian_Space.matrix_vector_mul_1", "Cartesian_Space.matrix_vector_mul_3" ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### \i. ?y $ i \ ?y ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Metis: Unused theorems: "local.less.prems_2", "local.less.prems_3", "local.less.prems_4" ### Metis: Unused theorems: "local.less.prems_1", "local.less.prems_3", "local.less.prems_4" ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### bounded {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Metis: Unused theorems: "??.unknown" ### Metis: Unused theorems: "??.unknown" ### Metis: Unused theorems: "local.that_2" ### Metis: Unused theorems: "local.that_3" ### Rewrite rule not in simpset: ### numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ numeral ?w1 * ?c1 ### else numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ - numeral ?w1 * ?c1 ### else - numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < numeral ?w1 * ?c1 ### else numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < - numeral ?w1 * ?c1 ### else - numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 < numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 < - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then numeral ?w1 * ?c1 = ?b1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then - numeral ?w1 * ?c1 = ?b1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = numeral ?w1 * ?c1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = - numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = - numeral ?w1 * ?c1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) \ ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 \ ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 \ ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 \ (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 \ ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 \ ?b1 \ ?a1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) < ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 < ?b1 \ ?a1 < (0::?'a1) \ ?b1 < ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 < (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 < ?b1 \ ?a1 = (0::?'a1) ### Metis: Unused theorems: "local.that_1", "local.that_2" ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate safe introduction (intro!) ### \continuous_map ?X ?X' ?f; continuous_map ?X' ?X'' ?g\ ### \ continuous_map ?X ?X'' (?g \ ?f) ### Ignoring duplicate safe introduction (intro!) ### continuous_map ?X ?X (\x. x) ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Metis: Unused theorems: "??.unknown", "Path_Connected.arc_imp_path" ### Ignoring duplicate rewrite rule: ### topspace (product_topology ?T1 ?I1) \ ### \\<^sub>E i\?I1. topspace (?T1 i) ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Metis: Unused theorems: "local.b_le_1" ### Metis: Unused theorems: "local.a_ge_0" ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### ?y1 \ ball ?x1 ?e1 \ dist ?x1 ?y1 < ?e1 ### Ignoring duplicate rewrite rule: ### ?y1 \ cball ?x1 ?e1 \ dist ?x1 ?y1 \ ?e1 ### Ignoring duplicate rewrite rule: ### path_connected {} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### affine T \ True ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### (\z. ?c1) analytic_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### deriv (\w. ?c1) \ \z. 0::?'a1 ### Ignoring duplicate rewrite rule: ### (\z. ?c1) analytic_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### deriv (\w. ?c1) \ \z. 0::?'a1 ### Ignoring duplicate rewrite rule: ### (\z. ?c1) analytic_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Metis: Unused theorems: "??.unknown" ### Ignoring duplicate rewrite rule: ### ?a1 \ closed_segment ?a1 ?b1 \ True ### Ignoring duplicate rewrite rule: ### ?b1 \ closed_segment ?a1 ?b1 \ True ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Metis: Unused theorems: "local.b" ### Metis: Unused theorems: "local.a" ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### closed (affine hull ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### closed (affine hull ?S1) \ True ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### \?a \ sigma_sets UNIV ### ((\(a, i). {x. x \ i < a}) ` ### (UNIV \ A)); ### ?b \ sigma_sets UNIV ### ((\(a, i). {x. x \ i < a}) ` ### (UNIV \ A))\ ### \ ?a - ?b ### \ sigma_sets UNIV ### ((\(a, i). {x. x \ i < a}) ` ### (UNIV \ A)) ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Metis: Unused theorems: "local.g_1", "local.g_2", "local.g_3", "local.g_4", "local.h_1", "local.h_2" ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### contractible_space (Euclidean_space ?n1) \ True ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### topspace (subtopology ?U1 ?V1) \ topspace ?U1 \ ?V1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Introduced fixed type variable(s): 'b in "Fa__" or "P__" ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Rule already declared as introduction (intro) ### (\x y. ?A x y \ ?B (?f x) (?g y)) \ ### rel_fun ?A ?B ?f ?g ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Metis: Unused theorems: "Complex.Im_rcis" ### Metis: Unused theorems: "Complex.Re_rcis" ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Metis: Unused theorems: "Transcendental.cos_minus", "Fields.division_ring_class.divide_minus_left" ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Rule already declared as elimination (elim) ### \?A \ ?B; ?c \ ?A \ ?P; ### ?c \ ?B \ ?P\ ### \ ?P ### Ignoring duplicate rewrite rule: ### of_nat (Suc ?m1) \ (1::?'a1) + of_nat ?m1 ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Rule already declared as introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Rule already declared as introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ereal (?f x)) \ ereal ?x) ?F ### Rule already declared as introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. - ?f x) \ - ?x) ?F ### Rule already declared as introduction (intro) ### \\?c\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Rule already declared as introduction (intro) ### \?x \ 0; (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Rule already declared as introduction (intro) ### \?y \ - \; ?x \ - \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Rule already declared as introduction (intro) ### \\?y\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Rule already declared as introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ennreal (?f x)) \ ennreal ?x) ?F ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate rewrite rule: ### 0 \ Suc ` ?A1 \ False ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Metis: Unused theorems: "local.S_2" ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### Fun.swap ?a1 ?b1 ?f1 ?a1 \ ?f1 ?b1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Metis: Unused theorems: "Cartesian_Space.vector_3_1", "Cartesian_Space.vector_3_2", "Cartesian_Space.vector_3_3" ### Rule already declared as introduction (intro) ### \?P ?x; ?x \ ?A\ ### \ \x\?A. ?P x ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate rewrite rule: ### of_real (numeral ?w1) \ numeral ?w1 ### Ignoring duplicate rewrite rule: ### 0 \ enn2real ?x1 \ True ### Ignoring duplicate rewrite rule: ### 0 \ enn2real ?x1 \ True ### Ignoring duplicate rewrite rule: ### 0 \ enn2real ?x1 \ True ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### of_real (numeral ?w1) \ numeral ?w1 ### Rule already declared as introduction (intro) ### (\i. ### i \ ?P \ ### simple_function ?M (?f i)) \ ### simple_function ?M (\x. \i\?P. ?f i x) ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Rule already declared as introduction (intro) ### \?b = ?f ?x; ?x \ ?A\ \ ?b \ ?f ` ?A ### Ignoring duplicate rewrite rule: ### (\i. ### i \ ?P1 \ ### simple_function ?M1 (?f1 i)) \ ### simple_function ?M1 (\x. \i\?P1. ?f1 i x) \ True ### Ignoring duplicate rewrite rule: ### \simple_function ?M1 ?f1; \x. 0 \ ?f1 x; ### simple_function ?M1 ?g1; \x. 0 \ ?g1 x\ ### \ \\<^sup>S x. ?f1 x + ### ?g1 x \?M1 \ ### integral\<^sup>S ?M1 ?f1 + integral\<^sup>S ?M1 ?g1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate safe introduction (intro!) ### (\i. ### i \ ?I \ continuous ?F (?f i)) \ ### continuous ?F (\x. \i\?I. ?f i x) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Rule already declared as introduction (intro) ### range ?A \ sets ?M \ ### \ (range ?A) \ sets ?M ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a - ?b \ sets ?M ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a - ?b \ sets ?M ### Ignoring duplicate rewrite rule: ### 0 \ Sigma_Algebra.measure ?M1 ?A1 \ True ### Rule already declared as introduction (intro) ### (\x. ?f x = ?g x) \ ?f = ?g ### Ignoring duplicate rewrite rule: ### ?A1 \ sets ?M1 \ ### simple_function ?M1 (indicator ?A1) \ True ### Ignoring duplicate rewrite rule: ### {?y1} \ sets ?M1 \ ### \\<^sup>+ x. ?f1 x * indicator {?y1} x \?M1 \ ### ?f1 ?y1 * emeasure ?M1 {?y1} ### Ignoring duplicate rewrite rule: ### path (linepath ?a1 ?b1) \ True ### Ignoring duplicate rewrite rule: ### vector [?y, ?y1] $ (1::?'b1) \ ?y ### Ignoring duplicate rewrite rule: ### vector [?x1, ?y] $ 2 \ ?y ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Rule already declared as introduction (intro) ### ?P ?x \ \x. ?P x ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a \ ?b \ sets ?M ### Rule already declared as introduction (intro) ### \?b = ?f ?x; ?x \ ?A\ \ ?b \ ?f ` ?A ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate safe introduction (intro!) ### (\x. x \ ?A \ x \ ?B) \ ### ?A \ ?B ### Rule already declared as introduction (intro) ### \?x \ sets ?A; ?y \ sets ?B\ ### \ ?x \ ?y \ sets (?A \\<^sub>M ?B) ### Rule already declared as introduction (intro) ### \?J \ ?L; ?X \ sets (Pi\<^sub>M ?J ?M)\ ### \ prod_emb ?L ?M ?J ?X \ sets (Pi\<^sub>M ?L ?M) ### Ignoring duplicate rewrite rule: ### f (0::'a) \ 0::'b ### Ignoring duplicate rewrite rule: ### \\\<^sub>F x in ?F1. 0 \ ?f1 x; 0 \ ?x1\ ### \ ((\x. ennreal (?f1 x)) \ ### ennreal ?x1) ### ?F1 \ ### (?f1 \ ?x1) ?F1 ### Ignoring duplicate introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ereal (?f x)) \ ereal ?x) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. - ?f x) \ - ?x) ?F ### Ignoring duplicate introduction (intro) ### \\?c\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Ignoring duplicate introduction (intro) ### \?x \ 0; (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Ignoring duplicate introduction (intro) ### \?y \ - \; ?x \ - \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Ignoring duplicate introduction (intro) ### \\?y\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ennreal (?f x)) \ ennreal ?x) ?F ### Rule already declared as safe introduction (intro!) ### True ### Ignoring duplicate introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ereal (?f x)) \ ereal ?x) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. - ?f x) \ - ?x) ?F ### Ignoring duplicate introduction (intro) ### \\?c\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Ignoring duplicate introduction (intro) ### \?x \ 0; (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Ignoring duplicate introduction (intro) ### \?y \ - \; ?x \ - \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Ignoring duplicate introduction (intro) ### \\?y\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ennreal (?f x)) \ ennreal ?x) ?F ### Ignoring duplicate rewrite rule: ### integrable ?M1 (\x. ?c1 * ?f1 x) \ ### ?c1 = 0 \ integrable ?M1 ?f1 ### Ignoring duplicate rewrite rule: ### integrable ?M1 (\x. ?c1 * ?f1 x) \ ### ?c1 = 0 \ integrable ?M1 ?f1 ### Ignoring duplicate rewrite rule: ### integrable ?M1 (\x. ?c1 * ?f1 x) \ ### ?c1 = 0 \ integrable ?M1 ?f1 ### Rule already declared as introduction (intro) ### (?c \ (0::?'b) \ integrable ?M ?f) \ ### integrable ?M (\x. ?c * ?f x) ### Rule already declared as introduction (intro) ### (?c \ (0::?'b) \ integrable ?M ?f) \ ### integrable ?M (\x. ?f x / ?c) ### Rule already declared as introduction (intro) ### \?A \ sets ?M; emeasure ?M ?A < \\ ### \ integrable ?M (indicat_real ?A) ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Metis: Unused theorems: "Set_Integral.set_integrable_def" ### Rule already declared as introduction (intro) ### (?c \ (0::?'b) \ ### ?f abs_summable_on ?A) \ ### (\x. ?c * ?f x) abs_summable_on ?A ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### 0 < DIM(?'a1) \ True ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?a1 \ ### ?a1 * (?b1 + ?c1) \ ?a1 * ?b1 + ?a1 * ?c1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?c1 \ ### (?a1 + ?b1) * ?c1 \ ?a1 * ?c1 + ?b1 * ?c1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?c1 \ ### (?a1 - ?b1) * ?c1 \ ?a1 * ?c1 - ?b1 * ?c1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?a1 \ ### ?a1 * (?b1 - ?c1) \ ?a1 * ?b1 - ?a1 * ?c1 ### Ignoring duplicate rewrite rule: ### inverse ?a1 \ (1::?'a1) / ?a1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### inverse ?a1 ^ ?n1 \ inverse (?a1 ^ ?n1) ### Ignoring duplicate rewrite rule: ### ((1::?'a1) / ?a1) ^ ?n1 \ (1::?'a1) / ?a1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### (?a1 / ?b1) ^ ?n1 \ ?a1 ^ ?n1 / ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?c1 \ ### (?a1 + ?b1) *\<^sub>R ?x1 \ ?a1 *\<^sub>R ?x1 + ?b1 *\<^sub>R ?x1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?a1 \ ### ?a1 *\<^sub>R (?x1 + ?y1) \ ?a1 *\<^sub>R ?x1 + ?a1 *\<^sub>R ?y1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?c1 \ ### (?a1 - ?b1) *\<^sub>R ?x1 \ ?a1 *\<^sub>R ?x1 - ?b1 *\<^sub>R ?x1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?a1 \ ### ?a1 *\<^sub>R (?x1 - ?y1) \ ?a1 *\<^sub>R ?x1 - ?a1 *\<^sub>R ?y1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?c1 \ ### (?a1 + ?b1) *s ?x1 \ ?a1 *s ?x1 + ?b1 *s ?x1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?a1 \ ### ?a1 *s (?x1 + ?y1) \ ?a1 *s ?x1 + ?a1 *s ?y1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?c1 \ ### (?a1 - ?b1) *s ?x1 \ ?a1 *s ?x1 - ?b1 *s ?x1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 div ?y1) ?a1 \ ### ?a1 *s (?x1 - ?y1) \ ?a1 *s ?x1 - ?a1 *s ?y1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 / ?y1) ?c1 \ ### (?a1 + ?b1) * ?x1 \ ?a1 * ?x1 + ?b1 * ?x1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 / ?y1) ?a1 \ ### ?a1 * (?x1 + ?y1) \ ?a1 * ?x1 + ?a1 * ?y1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 / ?y1) ?c1 \ ### (?a1 - ?b1) * ?x1 \ ?a1 * ?x1 - ?b1 * ?x1 ### Ignoring duplicate rewrite rule: ### NO_MATCH (?x1 / ?y1) ?a1 \ ### ?a1 * (?x1 - ?y1) \ ?a1 * ?x1 - ?a1 * ?y1 ### Rule already declared as introduction (intro) ### (?c \ (0::?'b) \ integrable ?M ?f) \ ### integrable ?M (\x. ?f x * ?c) ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Metis: Unused theorems: "Tagged_Division.interval_bounds'_2" ### Metis: Unused theorems: "Tagged_Division.interval_bounds'_1" ### Metis: Unused theorems: "local.assms_6" ### Metis: Unused theorems: "local.assms_6" ### Ignoring duplicate introduction (intro) ### ?f integrable_on ?i \ (?f has_integral integral ?i ?f) ?i ### Ignoring duplicate introduction (intro) ### ?f integrable_on ?i \ (?f has_integral integral ?i ?f) ?i ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Metis: Unused theorems: "local.assms_1", "Tagged_Division.division_ofD_4" ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) Failure node Enter MATCH \x _ i a b c d e f g h j k l m n o p q r s t u v w y z aa. :002 (\i. :001 (?n62 a b c d e f g h j k l m n o p q r s t u v w y z aa i)) \\<^sup>? \x _ i. ?n61 ?n61 \\<^sup>? ?n62 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (?n62 a b c d e f g h i j k l m n o p q r s t u v w x y z))))))))))))))))))))))))))))))))))))))))))))))))))))) Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y. :002 (\z. :001 (?n63 a b c d e f g h i j k l m n o p q r s t u v w x y z)) \\<^sup>? ?n62 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (?n62 a b c d e f g h i j k l m n o p q r s t u v w x y z))))))))))))))))))))))))))))))))))))))))))))))))))))) \x _ i. ?n62 \\<^sup>? \x _ i. ?n63 Failure node Enter MATCH \x _ i a b c d e f g h j k l m n o p q r s t u v w y z aa ab. :002 (\i. :001 (?n64 a b c d e f g h j k l m n o p q r s t u v w y z aa ab i)) \\<^sup>? \x _ i. ?n63 ?n63 \\<^sup>? ?n64 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (?n64 a b c d e f g h i j k l m n o p q r s t u v w x y z aa))))))))))))))))))))))))))))))))))))))))))))))))))))))) Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z. :002 (\aa. :001 (?n65 a b c d e f g h i j k l m n o p q r s t u v w x y z aa)) \\<^sup>? ?n64 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (?n64 a b c d e f g h i j k l m n o p q r s t u v w x y z aa))))))))))))))))))))))))))))))))))))))))))))))))))))))) \x _ i. ?n64 \\<^sup>? \x _ i. ?n65 Failure node Enter MATCH \x _ i a b c d e f g h j k l m n o p q r s t u v w y z aa ab ac. :002 (\i. :001 (?n66 a b c d e f g h j k l m n o p q r s t u v w y z aa ab ac i)) \\<^sup>? \x _ i. ?n65 ?n65 \\<^sup>? ?n66 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (:002 (\ab. :001 (?n66 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa. :002 (\ab. :001 (?n67 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab)) \\<^sup>? ?n66 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (:002 (\ab. :001 (?n66 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab))))))))))))))))))))))))))))))))))))))))))))))))))))))))) \x _ i. ?n66 \\<^sup>? \x _ i. ?n67 Failure node Enter MATCH \x _ i a b c d e f g h j k l m n o p q r s t u v w y z aa ab ac ad. :002 (\i. :001 (?n68 a b c d e f g h j k l m n o p q r s t u v w y z aa ab ac ad i)) \\<^sup>? \x _ i. ?n67 ?n67 \\<^sup>? ?n68 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (:002 (\ab. :001 (:002 (\ac. :001 (?n68 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab. :002 (\ac. :001 (?n69 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac)) \\<^sup>? ?n68 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (:002 (\ab. :001 (:002 (\ac. :001 (?n68 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) \x _ i. ?n68 \\<^sup>? \x _ i. ?n69 Failure node Enter MATCH \x _ i a b c d e f g h j k l m n o p q r s t u v w y z aa ab ac ad ae. :002 (\i. :001 (?n70 a b c d e f g h j k l m n o p q r s t u v w y z aa ab ac ad ae i)) \\<^sup>? \x _ i. ?n69 ?n69 \\<^sup>? ?n70 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (:002 (\ab. :001 (:002 (\ac. :001 (:002 (\ad. :001 (?n70 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Enter MATCH \a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac. :002 (\ad. :001 (?n71 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad)) \\<^sup>? ?n70 (:002 (\a. :001 (:002 (\b. :001 (:002 (\c. :001 (:002 (\d. :001 (:002 (\e. :001 (:002 (\f. :001 (:002 (\g. :001 (:002 (\h. :001 (:002 (\i. :001 (:002 (\j. :001 (:002 (\k. :001 (:002 (\l. :001 (:002 (\m. :001 (:002 (\n. :001 (:002 (\o. :001 (:002 (\p. :001 (:002 (\q. :001 (:002 (\r. :001 (:002 (\s. :001 (:002 (\t. :001 (:002 (\u. :001 (:002 (\v. :001 (:002 (\w. :001 (:002 (\x. :001 (:002 (\y. :001 (:002 (\z. :001 (:002 (\aa. :001 (:002 (\ab. :001 (:002 (\ac. :001 (:002 (\ad. :001 (?n70 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) \x _ i. ?n70 \\<^sup>? \x _ i. ?n71 Failure node ### Unification bound exceeded ### Introduced fixed type variable(s): 'c in "T__" or "g__" ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?r1 *\<^sub>R ?x1 \ ?y1 \ ?r1 * (?x1 \ ?y1) ### Ignoring duplicate rewrite rule: ### ?x1 \ ?r1 *\<^sub>R ?y1 \ ?r1 * (?x1 \ ?y1) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Introduced fixed type variable(s): 'b, 'c in "S__" or "fa__" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### blinfun_apply 0 ?b1 \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### blinfun_apply ?a1 (0::?'a1) \ 0::?'b1 ### Ignoring duplicate rewrite rule: ### compact (cbox ?a1 ?b1) \ True ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate rewrite rule: ### 0 \ content ?X1 \ True ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### simple_function ?M ?f \ ### simple_function ?M (\x. ennreal (?f x)) ### Ignoring duplicate rewrite rule: ### 0 \ enn2real ?x1 \ True ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a \ ?b \ sets ?M ### Rule already declared as introduction (intro) ### \finite ?I; ### \i. i \ ?I \ ?A i \ sets ?M\ ### \ \ (?A ` ?I) \ sets ?M ### Ignoring duplicate safe introduction (intro!) ### (\x. x \ ?A \ x \ ?B) \ ### ?A \ ?B ### Rule already declared as introduction (intro) ### \?a \ sets ?M; ?b \ sets ?M\ ### \ ?a \ ?b \ sets ?M ### Rule already declared as introduction (intro) ### \finite ?I; ### \i. i \ ?I \ ?A i \ sets ?M\ ### \ \ (?A ` ?I) \ sets ?M ### Rule already declared as introduction (intro) ### \finite ?I; ### \i. i \ ?I \ ?A i \ sets ?M\ ### \ \ (?A ` ?I) \ sets ?M ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ (0::?'a1) \ ### (0::?'a1) \ ?a1 \ ?b1 \ (0::?'a1) \ ### ?a1 \ (0::?'a1) \ (0::?'a1) \ ?b1 ### Rewrite rule not in simpset: ### numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ numeral ?w1 * ?c1 ### else numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ - numeral ?w1 * ?c1 ### else - numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < numeral ?w1 * ?c1 ### else numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < - numeral ?w1 * ?c1 ### else - numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 < numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 < - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then numeral ?w1 * ?c1 = ?b1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then - numeral ?w1 * ?c1 = ?b1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = numeral ?w1 * ?c1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = - numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = - numeral ?w1 * ?c1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) \ ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 \ ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 \ ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 \ (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 \ ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 \ ?b1 \ ?a1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) < ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 < ?b1 \ ?a1 < (0::?'a1) \ ?b1 < ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 < (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 < ?b1 \ ?a1 = (0::?'a1) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Rule already declared as introduction (intro) ### \finite ?I; ### \i. i \ ?I \ ?A i \ sets ?M\ ### \ \ (?A ` ?I) \ sets ?M ### Ignoring duplicate rewrite rule: ### vector_derivative (linepath ?a1 ?b1) (at ?x1) \ ?b1 - ?a1 ### Ignoring duplicate rewrite rule: ### (?f1 has_contour_integral 0) (subpath ?u1 ?u1 ?g1) \ True ### Ignoring duplicate rewrite rule: ### finite ?S1 \ ### \k\?S1. if k = ?a1 then ?b1 k else (0::?'a1) \ ### if ?a1 \ ?S1 then ?b1 ?a1 else (0::?'a1) ### Ignoring duplicate rewrite rule: ### valid_path (reversepath ?g1) \ valid_path ?g1 ### Ignoring duplicate rewrite rule: ### contour_integral (subpath ?u1 ?u1 ?g1) ?f1 \ 0 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Metis: Unused theorems: "Cauchy_Integral_Theorem.contour_integrable_subpath" ### Metis: Unused theorems: "Set.bot_set_def" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_6" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_5", "Path_Connected.segments_subset_convex_hull_6" ### Metis: Unused theorems: "Path_Connected.segments_subset_convex_hull_1", "Path_Connected.segments_subset_convex_hull_2", "Path_Connected.segments_subset_convex_hull_3", "Path_Connected.segments_subset_convex_hull_4", "Path_Connected.segments_subset_convex_hull_6" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Metis: Unused theorems: "Extended_Real.ereal_Lim_uminus" ### Metis: Unused theorems: "Extended_Real.ereal_Lim_uminus" ### Metis: Unused theorems: "Extended_Real.ereal_minus_less_minus" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 < (0::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < (0::?'a1) \ ### ?a1 < (0::?'a1) \ (0::?'a1) < ?b1 ### Ignoring duplicate rewrite rule: ### (0::?'a1) < ?a1 * ?b1 \ ### (0::?'a1) < ?a1 \ (0::?'a1) < ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 < (0::?'a1) ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Ignoring duplicate rewrite rule: ### \?i1 \ Basis; ?j1 \ Basis\ ### \ (\k\Basis. ### if k = ?i1 then ?f1 ?i1 *\<^sub>R ?i1 ### else ?g1 k *\<^sub>R k) \ ### ?j1 \ ### if ?j1 = ?i1 then ?f1 ?j1 else ?g1 ?j1 ### Metis: Unused theorems: "Groups.ab_semigroup_mult_class.mult.commute" ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### is_interval (cbox ?a1 ?b1) \ True ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 < (0::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < (0::?'a1) \ ### ?a1 < (0::?'a1) \ (0::?'a1) < ?b1 ### Ignoring duplicate rewrite rule: ### (0::?'a1) < ?a1 * ?b1 \ ### (0::?'a1) < ?a1 \ (0::?'a1) < ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 < (0::?'a1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Undeclared classical rule ### (?a \ ?b / numeral ?w) = (?a * numeral ?w \ ?b) ### Undeclared classical rule ### (?a \ ?b / - numeral ?w) = (?b \ ?a * - numeral ?w) ### Undeclared classical rule ### (?b / numeral ?w \ ?a) = (?b \ ?a * numeral ?w) ### Undeclared classical rule ### (?b / - numeral ?w \ ?a) = (?a * - numeral ?w \ ?b) ### Undeclared classical rule ### (?a < ?b / numeral ?w) = (?a * numeral ?w < ?b) ### Undeclared classical rule ### (?a < ?b / - numeral ?w) = (?b < ?a * - numeral ?w) ### Undeclared classical rule ### (?b / numeral ?w < ?a) = (?b < ?a * numeral ?w) ### Undeclared classical rule ### (?b / - numeral ?w < ?a) = (?a * - numeral ?w < ?b) ### Undeclared classical rule ### (?a = ?b / numeral ?w) = ### (if numeral ?w \ (0::?'a) then ?a * numeral ?w = ?b ### else ?a = (0::?'a)) ### Undeclared classical rule ### (?a = ?b / - numeral ?w) = ### (if - numeral ?w \ (0::?'a) then ?a * - numeral ?w = ?b ### else ?a = (0::?'a)) ### Undeclared classical rule ### (?b / numeral ?w = ?a) = ### (if numeral ?w \ (0::?'a) then ?b = ?a * numeral ?w ### else ?a = (0::?'a)) ### Undeclared classical rule ### (?b / - numeral ?w = ?a) = ### (if - numeral ?w \ (0::?'a) then ?b = ?a * - numeral ?w ### else ?a = (0::?'a)) ### Undeclared classical rule ### (numeral ?w \ ?b / ?c) = ### (if (0::?'a) < ?c then numeral ?w * ?c \ ?b ### else if ?c < (0::?'a) then ?b \ numeral ?w * ?c ### else numeral ?w \ (0::?'a)) ### Undeclared classical rule ### (- numeral ?w \ ?b / ?c) = ### (if (0::?'a) < ?c then - numeral ?w * ?c \ ?b ### else if ?c < (0::?'a) then ?b \ - numeral ?w * ?c ### else - numeral ?w \ (0::?'a)) ### Undeclared classical rule ### (?b / ?c \ numeral ?w) = ### (if (0::?'a) < ?c then ?b \ numeral ?w * ?c ### else if ?c < (0::?'a) then numeral ?w * ?c \ ?b ### else (0::?'a) \ numeral ?w) ### Undeclared classical rule ### (?b / ?c \ - numeral ?w) = ### (if (0::?'a) < ?c then ?b \ - numeral ?w * ?c ### else if ?c < (0::?'a) then - numeral ?w * ?c \ ?b ### else (0::?'a) \ - numeral ?w) ### Undeclared classical rule ### (numeral ?w < ?b / ?c) = ### (if (0::?'a) < ?c then numeral ?w * ?c < ?b ### else if ?c < (0::?'a) then ?b < numeral ?w * ?c else numeral ?w < (0::?'a)) ### Undeclared classical rule ### (- numeral ?w < ?b / ?c) = ### (if (0::?'a) < ?c then - numeral ?w * ?c < ?b ### else if ?c < (0::?'a) then ?b < - numeral ?w * ?c ### else - numeral ?w < (0::?'a)) ### Undeclared classical rule ### (?b / ?c < numeral ?w) = ### (if (0::?'a) < ?c then ?b < numeral ?w * ?c ### else if ?c < (0::?'a) then numeral ?w * ?c < ?b else (0::?'a) < numeral ?w) ### Undeclared classical rule ### (?b / ?c < - numeral ?w) = ### (if (0::?'a) < ?c then ?b < - numeral ?w * ?c ### else if ?c < (0::?'a) then - numeral ?w * ?c < ?b ### else (0::?'a) < - numeral ?w) ### Undeclared classical rule ### (numeral ?w = ?b / ?c) = ### (if ?c \ (0::?'a) then numeral ?w * ?c = ?b ### else numeral ?w = (0::?'a)) ### Undeclared classical rule ### (- numeral ?w = ?b / ?c) = ### (if ?c \ (0::?'a) then - numeral ?w * ?c = ?b ### else - numeral ?w = (0::?'a)) ### Undeclared classical rule ### (?b / ?c = numeral ?w) = ### (if ?c \ (0::?'a) then ?b = numeral ?w * ?c ### else numeral ?w = (0::?'a)) ### Undeclared classical rule ### (?b / ?c = - numeral ?w) = ### (if ?c \ (0::?'a) then ?b = - numeral ?w * ?c ### else - numeral ?w = (0::?'a)) ### Undeclared classical rule ### ((1::?'a) \ ?b / ?a) = ### ((0::?'a) < ?a \ ?a \ ?b \ ?a < (0::?'a) \ ?b \ ?a) ### Undeclared classical rule ### (?b / ?a \ (1::?'a)) = ### ((0::?'a) < ?a \ ?b \ ?a \ ### ?a < (0::?'a) \ ?a \ ?b \ ?a = (0::?'a)) ### Undeclared classical rule ### ((1::?'a) < ?b / ?a) = ### ((0::?'a) < ?a \ ?a < ?b \ ?a < (0::?'a) \ ?b < ?a) ### Undeclared classical rule ### (?b / ?a < (1::?'a)) = ### ((0::?'a) < ?a \ ?b < ?a \ ### ?a < (0::?'a) \ ?a < ?b \ ?a = (0::?'a)) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 < (0::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < (0::?'a1) \ ### ?a1 < (0::?'a1) \ (0::?'a1) < ?b1 ### Ignoring duplicate rewrite rule: ### (*) ?c1 analytic_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### deriv ((*) ?y2) \ \z. ?y2 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### (\z. ?c1) holomorphic_on ?s1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?c1) holomorphic_on ?s1 \ True ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as elimination (elim) ### \?f holomorphic_on ?s; ?t \ ?s\ ### \ ?f holomorphic_on ?t ### Ignoring duplicate rewrite rule: ### ((\x. x) has_derivative (\x. x)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### (id has_derivative id) (at ?a1) \ True ### Ignoring duplicate rewrite rule: ### ((\x. ?c1) has_derivative (\x. 0::?'b1)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### (?g1 has_derivative ?g'1) ?F1 \ ### ((\x. of_real (?g1 x)) has_derivative ### (\x. of_real (?g'1 x))) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) ?F1; ### (?g1 has_derivative ?g'1) ?F1\ ### \ ((\x. ?f1 x + ?g1 x) has_derivative ### (\x. ?f'1 x + ?g'1 x)) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### (\i. ### i \ ?I1 \ ### (?f1 i has_derivative ?f'1 i) ?F1) \ ### ((\x. \i\?I1. ?f1 i x) has_derivative ### (\x. \i\?I1. ?f'1 i x)) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### (?f1 has_derivative ?f'1) ?F1 \ ### ((\x. - ?f1 x) has_derivative (\x. - ?f'1 x)) ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) ?F1; ### (?g1 has_derivative ?g'1) ?F1\ ### \ ((\x. ?f1 x - ?g1 x) has_derivative ### (\x. ?f'1 x - ?g'1 x)) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) (at ?x1 within ?s1); ### (?g1 has_derivative ?g'1) (at ?x1 within ?s1)\ ### \ ((\x. ?f1 x * ?g1 x) has_derivative ### (\h. ?f1 ?x1 * ?g'1 h + ?f'1 h * ?g1 ?x1)) ### (at ?x1 within ?s1) \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) (at ?x1 within ?s1); ### (?g1 has_derivative ?g'1) (at ?x1 within ?s1)\ ### \ ((\x. ?f1 x *\<^sub>R ?g1 x) has_derivative ### (\h. ### ?f1 ?x1 *\<^sub>R ?g'1 h + ?f'1 h *\<^sub>R ?g1 ?x1)) ### (at ?x1 within ?s1) \ ### True ### Ignoring duplicate rewrite rule: ### (\i. ### i \ ?I1 \ ### (?f1 i has_derivative ?f'1 i) (at ?x1 within ?S1)) \ ### ((\x. \i\?I1. ?f1 i x) has_derivative ### (\y. ### \i\?I1. ?f'1 i y * (\j\?I1 - {i}. ?f1 j ?x1))) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### (?f1 has_derivative ?f'1) (at ?x1 within ?S1) \ ### ((\x. ?f1 x ^ ?n1) has_derivative ### (\y. of_nat ?n1 * ?f'1 y * ?f1 ?x1 ^ (?n1 - 1))) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 ?x1 \ (0::?'a1); ### (?f1 has_derivative ?f'1) (at ?x1 within ?S1)\ ### \ ((\x. inverse (?f1 x)) has_derivative ### (\h. ### - (inverse (?f1 ?x1) * ?f'1 h * inverse (?f1 ?x1)))) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) (at ?x1 within ?S1); ### (?g1 has_derivative ?g'1) (at ?x1 within ?S1); ### ?g1 ?x1 \ (0::?'a1)\ ### \ ((\x. ?f1 x / ?g1 x) has_derivative ### (\h. ### - ?f1 ?x1 * ### (inverse (?g1 ?x1) * ?g'1 h * inverse (?g1 ?x1)) + ### ?f'1 h / ?g1 ?x1)) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### (\x. x) differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?a1) differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable ?F1; ?g1 differentiable ?F1\ ### \ (\x. ?f1 x + ?g1 x) differentiable ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \finite ?s1; \a\?s1. ?f1 a differentiable ?net1\ ### \ (\x. \a\?s1. ?f1 a x) differentiable ### ?net1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 differentiable ?F1 \ ### (\x. - ?f1 x) differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable ?F1; ?g1 differentiable ?F1\ ### \ (\x. ?f1 x - ?g1 x) differentiable ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1\ ### \ (\x. ?f1 x * ?g1 x) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?f1 ?x1 \ (0::?'b1)\ ### \ (\x. inverse (?f1 x)) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1; ?g1 ?x1 \ (0::?'b1)\ ### \ (\x. ?f1 x / ?g1 x) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 differentiable at ?x1 within ?s1 \ ### (\x. ?f1 x ^ ?n1) differentiable at ?x1 within ?s1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1\ ### \ (\x. ?f1 x *\<^sub>R ?g1 x) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### ((\x. ?c1) has_vector_derivative (0::?'a1)) ?net1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. x) has_vector_derivative 1) ?net1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. ?k1) has_field_derivative (0::?'a1)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. x) has_field_derivative (1::?'a1)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### (?g1 has_derivative ?g'1) ?F1 \ ### ((\x. cnj (?g1 x)) has_derivative (\x. cnj (?g'1 x))) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1\ ### \ (\x. (?f1 x, ?g1 x)) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### (\x. x) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### id differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?c1) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\z. ?f1 z * ?g1 z) differentiable_on ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 differentiable_on ?S1 \ ### (\z. - ?f1 z) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\z. ?f1 z + ?g1 z) differentiable_on ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\z. ?f1 z - ?g1 z) differentiable_on ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ### \x. x \ ?S1 \ ?f1 x \ (0::?'b1)\ ### \ (\x. inverse (?f1 x)) differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\x. ?f1 x *\<^sub>R ?g1 x) differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ((\x. (norm x)\<^sup>2) has_derivative ### (\x. 2 *\<^sub>R (?a1 \ x))) ### (at ?a1) \ ### True ### Ignoring duplicate rewrite rule: ### (\x. (norm x)\<^sup>2) differentiable at ?a1 \ True ### Ignoring duplicate rewrite rule: ### (\x. (norm x)\<^sup>2) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### ?a1 \ (0::?'a1) \ ### norm differentiable at ?a1 \ True ### Ignoring duplicate rewrite rule: ### (0::?'a1) \ ?S1 \ ### norm differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### (*) ?c1 field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?c1) field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\z. z) field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### id field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (+) ?c1 field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\x. x) C1_differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?a1) C1_differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x + ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 C1_differentiable_on ?S1 \ ### (\x. - ?f1 x) C1_differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x - ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x * ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x *\<^sub>R ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### linear ((*) ?c1) \ True ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?z1; ### ?f1 ?z1 \ \\<^sub>\\<^sub>0\ ### \ isCont (\x. Ln (?f1 x)) ?z1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. x) has_derivative (\x. x)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### (id has_derivative id) (at ?a1) \ True ### Ignoring duplicate rewrite rule: ### ((\x. ?c1) has_derivative (\x. 0::?'b1)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### (?g1 has_derivative ?g'1) ?F1 \ ### ((\x. of_real (?g1 x)) has_derivative ### (\x. of_real (?g'1 x))) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) ?F1; ### (?g1 has_derivative ?g'1) ?F1\ ### \ ((\x. ?f1 x + ?g1 x) has_derivative ### (\x. ?f'1 x + ?g'1 x)) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### (\i. ### i \ ?I1 \ ### (?f1 i has_derivative ?f'1 i) ?F1) \ ### ((\x. \i\?I1. ?f1 i x) has_derivative ### (\x. \i\?I1. ?f'1 i x)) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### (?f1 has_derivative ?f'1) ?F1 \ ### ((\x. - ?f1 x) has_derivative (\x. - ?f'1 x)) ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) ?F1; ### (?g1 has_derivative ?g'1) ?F1\ ### \ ((\x. ?f1 x - ?g1 x) has_derivative ### (\x. ?f'1 x - ?g'1 x)) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) (at ?x1 within ?s1); ### (?g1 has_derivative ?g'1) (at ?x1 within ?s1)\ ### \ ((\x. ?f1 x * ?g1 x) has_derivative ### (\h. ?f1 ?x1 * ?g'1 h + ?f'1 h * ?g1 ?x1)) ### (at ?x1 within ?s1) \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) (at ?x1 within ?s1); ### (?g1 has_derivative ?g'1) (at ?x1 within ?s1)\ ### \ ((\x. ?f1 x *\<^sub>R ?g1 x) has_derivative ### (\h. ### ?f1 ?x1 *\<^sub>R ?g'1 h + ?f'1 h *\<^sub>R ?g1 ?x1)) ### (at ?x1 within ?s1) \ ### True ### Ignoring duplicate rewrite rule: ### (\i. ### i \ ?I1 \ ### (?f1 i has_derivative ?f'1 i) (at ?x1 within ?S1)) \ ### ((\x. \i\?I1. ?f1 i x) has_derivative ### (\y. ### \i\?I1. ?f'1 i y * (\j\?I1 - {i}. ?f1 j ?x1))) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### (?f1 has_derivative ?f'1) (at ?x1 within ?S1) \ ### ((\x. ?f1 x ^ ?n1) has_derivative ### (\y. of_nat ?n1 * ?f'1 y * ?f1 ?x1 ^ (?n1 - 1))) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 ?x1 \ (0::?'a1); ### (?f1 has_derivative ?f'1) (at ?x1 within ?S1)\ ### \ ((\x. inverse (?f1 x)) has_derivative ### (\h. ### - (inverse (?f1 ?x1) * ?f'1 h * inverse (?f1 ?x1)))) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### \(?f1 has_derivative ?f'1) (at ?x1 within ?S1); ### (?g1 has_derivative ?g'1) (at ?x1 within ?S1); ### ?g1 ?x1 \ (0::?'a1)\ ### \ ((\x. ?f1 x / ?g1 x) has_derivative ### (\h. ### - ?f1 ?x1 * ### (inverse (?g1 ?x1) * ?g'1 h * inverse (?g1 ?x1)) + ### ?f'1 h / ?g1 ?x1)) ### (at ?x1 within ?S1) \ ### True ### Ignoring duplicate rewrite rule: ### (\x. x) differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?a1) differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable ?F1; ?g1 differentiable ?F1\ ### \ (\x. ?f1 x + ?g1 x) differentiable ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \finite ?s1; \a\?s1. ?f1 a differentiable ?net1\ ### \ (\x. \a\?s1. ?f1 a x) differentiable ### ?net1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 differentiable ?F1 \ ### (\x. - ?f1 x) differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable ?F1; ?g1 differentiable ?F1\ ### \ (\x. ?f1 x - ?g1 x) differentiable ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1\ ### \ (\x. ?f1 x * ?g1 x) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?f1 ?x1 \ (0::?'b1)\ ### \ (\x. inverse (?f1 x)) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1; ?g1 ?x1 \ (0::?'b1)\ ### \ (\x. ?f1 x / ?g1 x) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 differentiable at ?x1 within ?s1 \ ### (\x. ?f1 x ^ ?n1) differentiable at ?x1 within ?s1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1\ ### \ (\x. ?f1 x *\<^sub>R ?g1 x) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### ((\x. ?c1) has_vector_derivative (0::?'a1)) ?net1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. x) has_vector_derivative 1) ?net1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. ?k1) has_field_derivative (0::?'a1)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### ((\x. x) has_field_derivative (1::?'a1)) ?F1 \ True ### Ignoring duplicate rewrite rule: ### (?g1 has_derivative ?g'1) ?F1 \ ### ((\x. cnj (?g1 x)) has_derivative (\x. cnj (?g'1 x))) ### ?F1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable at ?x1 within ?s1; ### ?g1 differentiable at ?x1 within ?s1\ ### \ (\x. (?f1 x, ?g1 x)) differentiable at ?x1 ### within ?s1 \ ### True ### Ignoring duplicate rewrite rule: ### (\x. x) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### id differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?c1) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\z. ?f1 z * ?g1 z) differentiable_on ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 differentiable_on ?S1 \ ### (\z. - ?f1 z) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\z. ?f1 z + ?g1 z) differentiable_on ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\z. ?f1 z - ?g1 z) differentiable_on ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ### \x. x \ ?S1 \ ?f1 x \ (0::?'b1)\ ### \ (\x. inverse (?f1 x)) differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 differentiable_on ?S1; ?g1 differentiable_on ?S1\ ### \ (\x. ?f1 x *\<^sub>R ?g1 x) differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ((\x. (norm x)\<^sup>2) has_derivative ### (\x. 2 *\<^sub>R (?a1 \ x))) ### (at ?a1) \ ### True ### Ignoring duplicate rewrite rule: ### (\x. (norm x)\<^sup>2) differentiable at ?a1 \ True ### Ignoring duplicate rewrite rule: ### (\x. (norm x)\<^sup>2) differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### ?a1 \ (0::?'a1) \ ### norm differentiable at ?a1 \ True ### Ignoring duplicate rewrite rule: ### (0::?'a1) \ ?S1 \ ### norm differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### (*) ?c1 field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?c1) field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\z. z) field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### id field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (+) ?c1 field_differentiable ?F1 \ True ### Ignoring duplicate rewrite rule: ### (\x. x) C1_differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### (\z. ?a1) C1_differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x + ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### ?f1 C1_differentiable_on ?S1 \ ### (\x. - ?f1 x) C1_differentiable_on ?S1 \ True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x - ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x * ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### \?f1 C1_differentiable_on ?S1; ?g1 C1_differentiable_on ?S1\ ### \ (\x. ?f1 x *\<^sub>R ?g1 x) C1_differentiable_on ### ?S1 \ ### True ### Ignoring duplicate rewrite rule: ### homotopic_with ?P1 ?X1 ?Y1 ?f1 ?f1 \ ### continuous_map ?X1 ?Y1 ?f1 \ ?P1 ?f1 ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?z1; ### ?f1 ?z1 \ \\<^sub>\\<^sub>0\ ### \ isCont (\x. Ln (?f1 x)) ?z1 \ True ### Ignoring duplicate rewrite rule: ### (+) ?b1 ` ball ?a1 ?r1 \ ball (?a1 + ?b1) ?r1 ### Ignoring duplicate rewrite rule: ### continuous_on {?x1} ?f1 \ True ### Metis: Unused theorems: "Real_Vector_Spaces.real_normed_vector_class.norm_minus_commute" ### Rewrite rule not in simpset: ### numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ numeral ?w1 * ?c1 ### else numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ - numeral ?w1 * ?c1 ### else - numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < numeral ?w1 * ?c1 ### else numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < - numeral ?w1 * ?c1 ### else - numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 < numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 < - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then numeral ?w1 * ?c1 = ?b1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then - numeral ?w1 * ?c1 = ?b1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = numeral ?w1 * ?c1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = - numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = - numeral ?w1 * ?c1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) \ ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 \ ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 \ ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 \ (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 \ ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 \ ?b1 \ ?a1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) < ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 < ?b1 \ ?a1 < (0::?'a1) \ ?b1 < ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 < (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 < ?b1 \ ?a1 = (0::?'a1) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Rewrite rule not in simpset: ### numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ numeral ?w1 * ?c1 ### else numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ - numeral ?w1 * ?c1 ### else - numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < numeral ?w1 * ?c1 ### else numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < - numeral ?w1 * ?c1 ### else - numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 < numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 < - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then numeral ?w1 * ?c1 = ?b1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then - numeral ?w1 * ?c1 = ?b1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = numeral ?w1 * ?c1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = - numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = - numeral ?w1 * ?c1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) \ ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 \ ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 \ ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 \ (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 \ ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 \ ?b1 \ ?a1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) < ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 < ?b1 \ ?a1 < (0::?'a1) \ ?b1 < ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 < (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 < ?b1 \ ?a1 = (0::?'a1) ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### open {} \ True ### Ignoring duplicate rewrite rule: ### closed {} \ True ### Ignoring duplicate rewrite rule: ### closed UNIV \ True ### Ignoring duplicate rewrite rule: ### closed ?S1 \ closed (insert ?a1 ?S1) \ True ### Ignoring duplicate rewrite rule: ### open {?a1<..} \ True ### Ignoring duplicate rewrite rule: ### open {.. True ### Ignoring duplicate rewrite rule: ### open {?a1<.. True ### Ignoring duplicate rewrite rule: ### closed {..?a1} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..} \ True ### Ignoring duplicate rewrite rule: ### closed {?a1..?b1} \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### continuous bot ?f1 \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) (\x. x) \ True ### Ignoring duplicate rewrite rule: ### continuous (at ?x1 within ?S1) id \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 (\x. ?c1) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?g1 ?a1 \ (0::?'b1)\ ### \ isCont (\x. ?f1 x / ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; 0 < ?f1 ?a1; ?f1 ?a1 \ 1; ### 0 < ?g1 ?a1\ ### \ isCont (\x. log (?f1 x) (?g1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; isCont ?g1 ?a1; ?f1 ?a1 \ 0\ ### \ isCont (\x. ?f1 x powr ?g1 x) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; cos (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. tan (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?a1; sin (?f1 ?a1) \ (0::?'a1)\ ### \ isCont (\x. cot (?f1 x)) ?a1 \ True ### Ignoring duplicate rewrite rule: ### continuous ?F1 ?g1 \ ### continuous ?F1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_on ?s1 ?g1 \ ### continuous_on ?s1 (\x. cnj (?g1 x)) \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 id \ True ### Ignoring duplicate rewrite rule: ### continuous_map ?X1 ?X1 (\x. x) \ True ### Ignoring duplicate rewrite rule: ### \isCont ?f1 ?z1; ### ?f1 ?z1 \ \\<^sub>\\<^sub>0\ ### \ isCont (\x. Ln (?f1 x)) ?z1 \ True ### Metis: Unused theorems: "Set.Compl_eq_Diff_UNIV", "Convex.connected_UNIV", "Orderings.order_top_class.top_greatest" ### Metis: Unused theorems: "Connected.connected_component_sym" ### Metis: Unused theorems: "local.assms_7" ### Rewrite rule not in simpset: ### Complex ?a1 ?b1 \ complex_of_real ?a1 + \ * complex_of_real ?b1 ### Rewrite rule not in simpset: ### Complex ?a1 ?b1 \ complex_of_real ?a1 + \ * complex_of_real ?b1 ### Rewrite rule not in simpset: ### {0<..} \ range Suc ### Rewrite rule not in simpset: ### Complex ?a1 ?b1 \ complex_of_real ?a1 + \ * complex_of_real ?b1 ### Rewrite rule not in simpset: ### Complex ?a1 ?b1 \ complex_of_real ?a1 + \ * complex_of_real ?b1 ### Rewrite rule not in simpset: ### {0<..} \ range Suc ### Rewrite rule not in simpset: ### numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ numeral ?w1 * ?c1 ### else numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 \ ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 \ ?b1 ### else if ?c1 < (0::?'a1) then ?b1 \ - numeral ?w1 * ?c1 ### else - numeral ?w1 \ (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 \ - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 \ - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 \ ?b1 ### else (0::?'a1) \ - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < numeral ?w1 * ?c1 ### else numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 < ?b1 / ?c1 \ ### if (0::?'a1) < ?c1 then - numeral ?w1 * ?c1 < ?b1 ### else if ?c1 < (0::?'a1) then ?b1 < - numeral ?w1 * ?c1 ### else - numeral ?w1 < (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 < numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < numeral ?w1 ### Rewrite rule not in simpset: ### ?b1 / ?c1 < - numeral ?w1 \ ### if (0::?'a1) < ?c1 then ?b1 < - numeral ?w1 * ?c1 ### else if ?c1 < (0::?'a1) then - numeral ?w1 * ?c1 < ?b1 ### else (0::?'a1) < - numeral ?w1 ### Rewrite rule not in simpset: ### numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then numeral ?w1 * ?c1 = ?b1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### - numeral ?w1 = ?b1 / ?c1 \ ### if ?c1 \ (0::?'a1) then - numeral ?w1 * ?c1 = ?b1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = numeral ?w1 * ?c1 ### else numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### ?b1 / ?c1 = - numeral ?w1 \ ### if ?c1 \ (0::?'a1) then ?b1 = - numeral ?w1 * ?c1 ### else - numeral ?w1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) \ ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 \ ?b1 \ ### ?a1 < (0::?'a1) \ ?b1 \ ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 \ (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 \ ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 \ ?b1 \ ?a1 = (0::?'a1) ### Rewrite rule not in simpset: ### (1::?'a1) < ?b1 / ?a1 \ ### (0::?'a1) < ?a1 \ ?a1 < ?b1 \ ?a1 < (0::?'a1) \ ?b1 < ?a1 ### Rewrite rule not in simpset: ### ?b1 / ?a1 < (1::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < ?a1 \ ### ?a1 < (0::?'a1) \ ?a1 < ?b1 \ ?a1 = (0::?'a1) ### Metis: Unused theorems: "local.z12_1" ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### ?x1 \ of_int \?x1\ \ True ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### 0 < ?n1 \ ### Ln (of_nat ?n1) \ complex_of_real (ln (real ?n1)) ### Ignoring duplicate rewrite rule: ### 0 < ?n1 \ ### Ln (of_nat ?n1) \ complex_of_real (ln (real ?n1)) ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ?z \ \\<^sub>\\<^sub>0 \ (Polygamma ?n has_field_derivative Polygamma (Suc ?n) ?z) (at ?z within ?A) ### Metis: Unused theorems: "local.znot_2" ### Metis: Unused theorems: "local.sp_1", "local.sp_2" ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### netlimit (at ?y) \ ?y ### Ignoring duplicate rewrite rule: ### netlimit (at ?y) \ ?y ### Ignoring duplicate rewrite rule: ### 0 < ?n1 \ ### Ln (of_nat ?n1) \ complex_of_real (ln (real ?n1)) ### Ignoring duplicate rewrite rule: ### netlimit (at ?y) \ ?y ### Ignoring duplicate rewrite rule: ### netlimit (at ?y) \ ?y ### Ignoring duplicate rewrite rule: ### 0 < ?n1 \ ### Ln (of_nat ?n1) \ complex_of_real (ln (real ?n1)) ### Rule already declared as introduction (intro) ### 0 < ?x \ 0 < Gamma ?x ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Rule already declared as elimination (elim) ### \?x \ \\<^sub>\\<^sub>0; ### ?x \ \ \ PROP ?W\ ### \ PROP ?W ### Ignoring duplicate rewrite rule: ### ?y gchoose 1 \ ?y ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Ignoring duplicate rewrite rule: ### 0 < ?n1 \ ### Ln (of_nat ?n1) \ complex_of_real (ln (real ?n1)) ### Rule already declared as introduction (intro) ### (\x. x \ space ?M \ ?P x) \ ### almost_everywhere ?M ?P ### Ignoring duplicate rewrite rule: ### cball ?x1 ?e1 = {} \ ?e1 < 0 ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Ignoring duplicate rewrite rule: ### dist (0::?'a1) ?x1 \ norm ?x1 ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Rule already declared as introduction (intro) ### open {} ### Rule already declared as introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### closed {} ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### closed UNIV ### Rule already declared as introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Rule already declared as introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Rule already declared as introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Rule already declared as introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Rule already declared as introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Rule already declared as introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Rule already declared as introduction (intro) ### closed ?S \ open (- ?S) ### Rule already declared as introduction (intro) ### open ?S \ closed (- ?S) ### Rule already declared as introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### sqrt ?x1 < sqrt ?y1 \ ?x1 < ?y1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate introduction (intro) ### open {} ### Ignoring duplicate introduction (intro) ### \open ?S; open ?T\ \ open (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. open (?B x) \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. open T\ ### \ open (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. open (?B x)\ ### \ open (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### closed {} ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### closed UNIV ### Ignoring duplicate introduction (intro) ### \closed ?S; closed ?T\ ### \ closed (?S \ ?T) ### Ignoring duplicate introduction (intro) ### \x\?A. closed (?B x) \ ### closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \S\?K. closed S \ closed (\ ?K) ### Ignoring duplicate introduction (intro) ### \finite ?S; \T\?S. closed T\ ### \ closed (\ ?S) ### Ignoring duplicate introduction (intro) ### \finite ?A; \x\?A. closed (?B x)\ ### \ closed (\ (?B ` ?A)) ### Ignoring duplicate introduction (intro) ### \open ?S; closed ?T\ \ open (?S - ?T) ### Ignoring duplicate introduction (intro) ### \closed ?S; open ?T\ \ closed (?S - ?T) ### Ignoring duplicate introduction (intro) ### closed ?S \ open (- ?S) ### Ignoring duplicate introduction (intro) ### open ?S \ closed (- ?S) ### Ignoring duplicate introduction (intro) ### continuous_on ?s (linepath ?a ?b) ### Ignoring duplicate rewrite rule: ### \x\?A1. ?y1 \ ?y1 ^ card ?A1 ### Ignoring duplicate introduction (intro) ### ((\x. x) \ ?a) (at ?a within ?s) ### Ignoring duplicate introduction (intro) ### ((\x. ?k) \ ?k) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ereal (?f x)) \ ereal ?x) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. - ?f x) \ - ?x) ?F ### Ignoring duplicate introduction (intro) ### \\?c\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Ignoring duplicate introduction (intro) ### \?x \ 0; (?f \ ?x) ?F\ ### \ ((\x. ?c * ?f x) \ ?c * ?x) ?F ### Ignoring duplicate introduction (intro) ### \?y \ - \; ?x \ - \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Ignoring duplicate introduction (intro) ### \\?y\ \ \; ### (?f \ ?x) ?F\ ### \ ((\x. ?f x + ?y) \ ?x + ?y) ?F ### Ignoring duplicate introduction (intro) ### (?f \ ?x) ?F \ ### ((\x. ennreal (?f x)) \ ennreal ?x) ?F ### Ignoring duplicate rewrite rule: ### (?P1 \ ?Q1) \ ?R1 \ ?P1 \ ?Q1 \ ?R1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 < (0::?'a1) \ ### (0::?'a1) < ?a1 \ ?b1 < (0::?'a1) \ ### ?a1 < (0::?'a1) \ (0::?'a1) < ?b1 ### Ignoring duplicate rewrite rule: ### ?c1 \ 0 \ ### (\x. ?c1 * ?f1 x) integrable_on ?S1 \ ?f1 integrable_on ?S1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 + ?c1 \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + ?b1 \ ?b1 + ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 + (?a1 + ?c1) \ ?a1 + (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 - ?c1 \ ?a1 - (?b1 + ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 + (?b1 - ?c1) \ ?a1 + ?b1 - ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 = ?c1 \ ?a1 = ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 = ?c1 - ?b1 \ ?a1 + ?b1 = ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - (?b1 - ?c1) \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 + ?c1 \ ?a1 + ?c1 - ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 < ?c1 \ ?a1 < ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 < ?c1 - ?b1 \ ?a1 + ?b1 < ?c1 ### Ignoring duplicate rewrite rule: ### ?a1 - ?b1 \ ?c1 \ ?a1 \ ?c1 + ?b1 ### Ignoring duplicate rewrite rule: ### ?a1 \ ?c1 - ?b1 \ ?a1 + ?b1 \ ?c1 ### Ignoring duplicate rewrite rule: ### (?a1 * ?b1) ^ ?n1 \ ?a1 ^ ?n1 * ?b1 ^ ?n1 ### Ignoring duplicate rewrite rule: ### linear ((*v) ?A1) \ True ?a \ affine hull ?S \ aff_dim ?S = int (dim ((+) (- ?a) ` ?S)) sigma_finite_measure (count_space ?A) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 * ?c1 \ ?a1 * (?b1 * ?c1) ### Ignoring duplicate rewrite rule: ### ?a1 * ?b1 \ ?b1 * ?a1 ### Ignoring duplicate rewrite rule: ### ?b1 * (?a1 * ?c1) \ ?a1 * (?b1 * ?c1)