Proving the Completeness Theorem within
[sabelle/HOL

James Margetson

22 September 2004

Abstract

This is a report about formalising a maths proof with the theorem prover
Isabelle/HOL. The proof was for the completeness theorem of first order
logic. The informal proof used symmetry arguments (duality) and also gave
the cut elimination theorem as a corollary. Both these aspects were pre-
served formally.

The paper outlines this formalisation. It notes that parts of the proof
can be viewed as a correctness proof for a naive proof procedure. Some
speculative comments about the possibility of a proven reflection principle
are made in the conclusions.

CONTENTS

Contents
1 Introduction
2 Formulas and Sequents
3 Models and valuations
3.1 Theobjecttypeo
4 Rules and deductions
5 Completeness
6 Trees
6.1 Branches through trees.
6.2 Leaf-up inductiono
7 Proof-search completeness
7.1 The subs function
7.2 Afairness property
7.3 Failing branch properties. oL
8 Observations

Further work

10
10
11
11

12

12

ii

CONTENTS

1 Introduction

Here, the Completeness theorem is formalised within Isabelle/HOL, [5]. The
proof follows the first 5 pages of Wainer and Wallen’s chapter in Aczel et
al. [1]. This gives a concise presentation of FOL, a proof of completeness
and obtains the cut elimination theorem as a corollary. Their presentation
of formulas allow symmetry arguments to be used in proofs. This symmetry
is preserved in the formal proofs. Their principal inference rules proceed
by breaking down the structure of the sequents. This is closely related to
a simple tableaux proof procedure. In §5 I note the connection between
completeness and the correctness of the proof procedure.

Prior work. There have been several similar formal proofs in the area of
meta mathematics.

Shankar [10] proved the incompleteness theorem within the Boyer-Moore
theorem prover. The incompleteness theorem is Godel’s famous proof. He
estimates that this was about 18 months work.

Persson has formalised a completeness proof for intuitionistic FOL within
ALF, [9]. He interprets the FOL formulas in formal topology, where the
excluded middle law need not hold. Here FOL formulas are interpreted
in the enclosing HOL logic. For variables, he used both a naive naming
representation and de Bruijn indices. He comments that his soundness proof
is simpler with de Bruijn indices.

In [6], Paulson proves completeness for propositional logic in Isabelle/ZF
to demonstrate the inductive definition package. This was an adaption of
Tobias Nipkow’s proof in Isabelle/HOL. Their representation for inference
rules and deductions is also used here.

Raffalli has formalised an abstract completeness proof in the proof as-
sistant AF2, available as part of the AF2 distribution.

More closely related work includes recent papers by John Harrison[?]
and Anna Mikhajlova[?]. References to appear here soon!

Isabelle. Isabelle is a tactical theorem prover. It supports severals logics,
but mainly HOL and ZF set theory in practice. The logic used here was
HOL. However set theory might have been more natural for formalising this
proof.

The Isabelle/HOL syntax is different to some of the other HOL provers.
Selected comments about the syntax occur in footnotes where needed.

The Isabelle system has many tools available to help automate proofs.
blast_tac,[7], in particular was very useful. As was the inductive definition
package.

Outline. The representation of FOL in HOL is described in §2. Models
and valuations are defined in §3. Inference rules and deductions are defined

2 2 FORMULAS AND SEQUENTS

in §4. These give the two notions of truth. The completeness theorem and
its relation to cut-elimination and the implicit proof procedure is described
in §5. The main theorems are stated, interpreted and proofs outlined briefly.
Some properties of trees were required, §6. Details about the proof procedure
are given in §7. Observations and comments on further work are made in
the remaining sections.

2 Formulas and Sequents

Formulas, F', have the following grammar:

F == Pi(vi,...,vn,) | Pi(vi,...,v,)
| FAF | FVF
| Vz.F | Jz.F

where P; are predicates and v; are variables. Predicates occur in comple-
mentary pairs and are countable, as are the variables. The atomic formula
are predicates applied to variables, subject to arity restrictions. These are
extended as shown, so formulas are in negation normal form. The other
connectives, e.g. — and = , can be defined. The structural symmetry
visible above is emphasised and used in proofs.

Formulas are represented as follows:

datatype vbl = X nat
datatype predicate = Predicate nat
datatype sign = Pos | Neg

datatype formula =
FAtom sign predicate (vbl list)
| FConj sign formula formula
| FA11 sign formula

There are only three formula constructors. The structural symmetry has
been made explicit with the sign argument. This gives concise definitions
for purely structural functions like freeVarsF. Symmetry can be used in
proofs by considering formula but not sign cases. A de Bruijn variable
representation is used [2]. The quantifiers implicitly bind the least variable.
This is why FA11 does not identify the bound variable. Informally, predicates
had an associated arity. This restriction can be dropped, so atoms are signed
predicates on variable lists.

Initially, I had used a named-variable representation but a proof linking
substitution and evaluation was a problem!. The de Bruijn representation
greatly simplified the proofs and definitions.

The following functions are defined:

!Substitution needed to rename bound variables to avoid capture, so a single substi-
tution became two substitutions. One solution was to accumulate a list of substitutions,
but this complicated the proof.

freeVarsF :: formula => vbl set

SubF :: (vbl => vbl) => formula => formula
instanceF :: vbl => formula => formula
freshVar :: vbl set => vbl

subF extends a variable mapping over a formula, respecting de Bruijn rep-
resentation. Specifically, when extending a variable mapping, 0, inside a
quantifier the body variables are mapped with a lifted version of 6. This
fixes the least variable and maps successor variables from v+ to 6(v)". subF
is used to define instanceF u B which gives B(u) for some quantifier body
B(xp). Calling freshVar A yields a variable not in A, provided A is finite.

Informally, sequents are finite multisets of formulas, which represent
disjunctions. Sequents are represented as formula lists. Functions like
freeVarsS are defined extending the corresponding formula functions. Se-
quents, like formulas, have only finitely many free variables. This property
ensures there are always fresh variables available. Some mechanism to per-
mute sequents is required. This is done via an explicit inference rule, which
is described in §4.

3 Models and valuations

A formula is wvalid if it is true under all interpretations. The FOL formu-
las are interpreted in HOL. An interpretation assigns objects to variables,
object-relations to predicates and restricts quantifiers to range of the object
set. Restricting quantifiers is sometimes called relativisation. Here interpre-
tations are represented by models and their assignments.

A model is a non empty set of objects and a relation on objects for each
predicate. A new type is defined with functions:

objects :: model => object set
evalP :: model => predicate => object list => bool
modelAssigns :: model => (vbl => object) set

Each model has assignment functions. These are the possible assignment
of objects to the variables. The objects must be drawn from the model’s
objects, not just the object type. This range restriction is only required
when proving soundness of the 3 rule. It is surprising how many proofs can
still be done with ‘incorrect’ definitions.

Given a model and an associated assignment, each formula can be evalu-
ated by extending the predicate evaluation structurally. Using duality,? the

definition of evalF does not distinguish the symmetric cases?.
sign :: sign => bool => bool
evalF :: model => (vbl => object) => formula => bool

ZSpecifically, AV B = =(—=A A =B) and 3z.B = -Vz.—B.
31x:A. P x is bounded quantification, x:4A is set membership.

4 3 MODELS AND VALUATIONS

evalF M phi (FAtom z P vs) = sign z (evalP M P (map phi vs))
evalF M phi (FConj z AO A1)
sign z (sign z (evalF M phi AO) & sign z (evalF M phi Al1))
evalF M phi (FA1ll =z body) =
sign z (!'x: (objects M). sign z (evalF M (vblcase x phi) body))

The function sign z is either negation or identity depending on z. The term
vblcase x phi defines a function by case analysis on variables, it could be
written as (A 0. z | vT. ¢(v)). There is an equation linking evaluation and
substitution which states that the variable mapping, 8, can be combined
with the variable assignment, ¢.

phi :: vbl => object
theta :: vbl => vbl

evalF M phi (subF theta A) = evalF M (phi o theta) A

The proof of the equation does not split the symmetric cases. In an evalua-
tion, only the assignments of the free variables matter.

equalOn (freeVarsF A) phi psi ==> evalF M phi A = evalF M psi A

Some properties of equalOn were proven to support some automated proofs.

Recall that considering all models and their assignments considers all
interpretations. A sequent, I', is valid, validS I, if under all models and
their assignments it evaluates to true.

3.1 The object type

The models draw their objects from a type, object. This type must contain,
at least, a countable subset of objects: objg, 0bj1,.... The existence of this
type and an injective function are asserted.

types object
consts obj :: nat => object
rules inj_obj "inj obj"

These are the only axioms introduced in the proof.

Initially I defined models to be polymorphic in the object type. This may
have allowed the counter-model, described in §7, to be built directly on the
variables. However, it was not possible to state the completeness theorem in
HOL. Stating validity required quantifying over all models which required
quantifying over all type instances (but not at the outside level). This is not
a first class operation in HOL.

= Axioms
Pi(vi,...,vp,), Pi(vi,. .. vn,) ()

m C) \m (¥) X fresh
Lo AF W)
CLRE (o)

Figure 1: The PC inference rules

4 Rules and deductions

The inference rules for FOL are given in Figure 1. These describe the Pred-
icate Calculus, PC. Without the Cut rule, they describe CutFreePC.

An inference rule is represented as a pair: a conclusion and set of
premises. Each FOL inference rule is represented as the set of all its in-
stances, as in [6]. For example*:

Alls :: rule set
Alls == { z. ? A x Gamma . z = (FAll Pos A#Gamma,{instanceF x A#Gamma})
& x ": freeVarsS (FAll Pos A#Gamma) }

The other FOL rules are defined similarly along with an additional rule to
permute sequents. The rule sets PC and CutFreePC are defined to be the
appropriate unions. These rule sets describe every single step inference that
can occur.

Deductions are the set of sequents inferable from some rules. They are
defined inductively, parameterised on a given rule set:

[l (conc, prems) : rules; prems : Pow (deductions rules) |]
==> conc : deductions rules

Axioms, having no premises, are the base case.

Isabelle’s inductive definition package derives the induction rules auto-
matically. The assumption that prems is a subset of deductions rules is
stated using the power set, not the subset, operator. This form is required
by the inductive definition package. These different representations of the
same thing are not seen as equivalent.

42 is the existential quantifier, # is the list cons operator, x T A means x not in A.

6 5 COMPLETENESS

Figure 2: The search tree from Gamma

In Wainer and Wallen’s chapter [1] several subsystems of PC are men-
tioned, characterised by subsets of the PC rules, e.g. CutFreePC and MPC.
Parameterising deductions allows these to be represented in a uniform way.
Proofs can be shared, e.g. soundness of deductions follows from soundness
of the individual rule sets.

Recall that sequents are represented as lists, not multisets. The rule
permuting sequents makes this multiset property explicit. This is also done
by Smullyan [11] with a rule to exchange adjacent formulas. A similar rule
would allow sequents to be considered as sets.

The deductions operator is monotonic, so deductions CutFreePC <=
deductions PC since CutFreePC <= PC.

5 Completeness

The theorems leading to the completeness theorem are summarised in the
following diagram.

soundness
Gamma : deductions PC validS Gamma

mono search — complete

search — sound
Gamma : deductions CutFreePC

proofTree (search Gamma)

The completeness theorem states that deducible and valid sequents co-
incide. The cut elimination theorem states that deductions of PC are also
deductions of CutFreePC. These results can be seen in the above diagram,
by following the implications.

Before commenting on the theorems the search Gamma term is ex-
plained: search Gamma represents the tree searched by the (implicit)
tableaux prover.

The nodes are sequents. It is unfolded from I' using a sub-node func-
tion. This function is justifiable using the inference rules. If all branches
terminate on axioms then the tree corresponds to a derivation tree, and is

called a proof-tree. A branch may not terminate. The implied proof proce-
dure is: search the tree to check whether all branches terminate on axioms.
The procedure is not a practical one compared with real provers, for exam-
ple [3]. One key difference is the way existential witnesses are found. Here
all variables are considered in turn. A more practical approach introduces
‘free-variables’ and tries to solve them through unification.

Some comments about the implications follow:

soundness This is proved by induction over deductions. The soundness of
each rule set can be proved separately, and the results combined.

search-sound This says that if proof-search for I' terminates and says yes,
then I' was a deduction. This is a soundness result for the proof-
search. The proof uses a leaf-up induction principle for bounded trees,
described in §6.2. This propagates the deduction CutFreePC prop-
erty from the leaves to the root.

search-complete This says that for valid I' the proof-search terminates
and says yes, which is a completeness result for the proof-search. The
contrapositive form is proven, in the diagram: negate the statements
and reverse the arrows. This uses the non proof-tree to construct
a counter model in which I'" is false. It requires a branch following
the non proof-tree property, and also some fairness properties of the
subs function. This is the most involved of the four theorems and is
discussed in §7.

6 Trees

A representation of infinite trees is needed, to represent the attempted proof-
search. The development is partly abstracted away from the completeness
proof in the sense that it is parameterised by the sub-node function. However
the representation of trees, as node sets, is not hidden.

Here, a tree is defined by a root node and a sub-node function. It is
generated by unfolding the tree a level at a time, adding sub-nodes. An
example tree is shown in Figure 3. The nodes are stratified into levels, equal
sub-nodes are identified within a level. Infinite branching occurs if there are
infinite sub-nodes. A terminal node occurs when their are no sub-nodes.

Each node is determined by its level node and its annotation. A tree is
represented by a (nat * ’a) set which is defined inductively:

inductive "tree subs gamma"
intrs
tree0 "(0,gamma) : tree subs gamma"

treel "[| (n,delta) : tree subs gamma; sigma : subs(delta) |[]
==> (Suc n,sigma) : tree subs gamma"

8 6 TREES

o - - - =
—_ - - - —
[\)

W - - — —

Figure 3: Trees

Some terminology was borrowed from [12]. A fan is a tree where each
node has only finitely many sub-nodes. A terminal node is one with no
sub-nodes. A branch is a function enumerating nodes, starting at the root,
strictly following the sub-node function and repeating only on terminals. If
all branches eventually terminate then the tree is said to be bounded.

Using definitions to capture properties concisely seemed to help. They
are a form of abstraction. The term branch subs Gamma f has abstracted
the relation between its arguments. It steps cleanly through proofs providing
its properties when needed. Well related definitions may lead to shorter
proofs. A proof using rules relating definitions may be shorter than one
done after unfolded definitions, due to sharing of the derived-rule proofs.

An equation relates a tree with its sub-trees®:

tree subs gamma = insert (0,gamma) (UN delta:subs gamma .
incLevel ‘¢ tree subs delta)

It is proved by induction and is used to expand tree subs gamma in some
proofs, avoiding the need for an explicit induction. This followed the paper
proofs.

Although called a tree, the structure here is more like the closure of the
subs relation. The levels help describe when the tree is bounded.

6.1 Branches through trees

The completeness proof required constructing a branch following the non
proof-tree property through a tree. More generally, inherited properties are
considered, where

P inherited iff (P holds on a parent iff P holds on all children).

Other examples of inherited properties include:

SUN x:A. B x is the indexed union of a family of sets. £ ‘¢ A is the image of the set
A mapped by the function f£.

6.2 Leaf-up induction 9

e being bounded, (fans only).
e being founded on @), meaning all terminal nodes satisfy Q.
e having a finite number of nodes, (fans only).

If such a P fails for a parent node then it must fail for some child. This
allows a branch to be constructed which follows the failing property. The
following theorem abstracts the path-construction function using exists.

[| inherited subs P; fans subs; “P(tree subs gamma) |]
==> 7 f . branch subs gamma f & (! n . "P(tree subs (f n)))

This is the result required by the completeness proof, but it requires showing
that the proof-tree property is inherited.

For fans, a parent tree can be constructed by moving the sub-trees up
a level, taking the finite union (pairwise) and inserting the (non terminal)
parent node. If a property is invariant over these structural operations then
it is inherited on fans. The examples given above meet these conditions. A
proof-tree is is a bounded tree which is founded on axioms. It is inherited
because the conjunction of inherited properties is inherited®.

(inherited subs P & inherited subs Q)
==> inherited subs (¥x. P x & Q x)

Another application, taking P to be finite, gives a version of Konig’s
lemma:

[| fans subs; ~ finite (tree subs Gamma) |]
==> 7 f . infBranch subs Gamma f

which states that a finitely branching tree with infinitely many nodes has
an infinite branch.

6.2 Leaf-up induction

For bounded trees their depth strictly decreases on subtrees. This measure
gives a terminal to root induction principle:

[| fans subs;

bounded (tree subs Gamma) ;

!delta. (! sigma:subs delta. P sigma) --> P delta |]
==> P Gamma

The fans assumption could be eliminated.

This is used to prove the search-sound result, which states that if I' gives
a proof-tree then it is a CutFreePC deduction. The property P is taken to be
“is a CutFreePC deduction”. Recall that proof-trees are bounded trees which

6%x. P x is lambda abstraction.

10 7 PROOF-SEARCH COMPLETENESS

are founded on axioms. Terminal nodes are axioms, which are CutFreePC
deductions. For non-terminal nodes, if the sub-nodes are CutFreePC de-
ductions then the parent node is also. So subs propagates P one level, as
required. The induction rule propagates P from the leaves to the root, I'.

Separating trees from the completeness proof made this inductive argu-
ment clearer.

7 Proof-search completeness

This section relates to the search-complete theorem. It is required to con-
struct a counter-model falsifying a sequent, I', from a failed proof-tree. There
is a non proof-tree branch through the tree. The (positive)-predicates are
evaluated to false if they are on this branch. Under this evaluation, all
formulas on the branch evaluate to false.

The subs function is described in §7.1. A fairness property of non proof-
tree branches is described in §7.2. The theorems which justify that the
evaluation falsifies branch formulas are given in §7.3.

7.1 The subs function

The function subs tries to construct a derivation tree following the structure
of I'. It comsiders the leading non atomic formula and attempts a CutFreePC
justifiable proof step”:

atoms, Ag N A1, I’ — atoms, A;,T for each i
atoms, Ag vV A1, I’ — atoms, Ag, A1,T

atoms,VA,T — atoms, A(z),T’ x fresh
atoms, (JA)',T — atoms, A(z;),T, (3A)""

The tree terminates as soon as complementary atoms, derived axioms, occur.
It forks when considering conjunctions. A fresh variable can always be found
when considering VA. The interesting case is 3A, where the formula is
retained. It introduces the i** witness instance and puts 3A to the back of
the queue. This ensures that all formulas are considered in turn, a fairness
condition.

A separate representation of sequents is used,

types pseq = "(atom list * (nat * formula) list)"

which separates atoms and formulas waiting to be considered. Each formula
is annotated with a witness index, although these are only used in the exists
case.

"Recall that sequents represent disjunctions of their formula.

7.2 A fairness property 11

7.2 A fairness property

On a branch following the non proof-tree property every sequent formula is
eventually considered by subs. The following predicates are defined:

contains f (i,A) :: nat => bool
considers f (i,A) :: nat => bool

EV :: (nat => bool) => bool

to describe i-formulas at a given point on the branch. EV pred says that
pred is eventually true at some point. The fairness condition amounts to a
proof that

[| branch subs gamma f; !n . ~ proofTree (tree subs (f n));
EV (contains f iA) |]
==> EV (considers f iA)

This required a termination argument. The barrier for (i,A) are the
leading i-formulas before it. Whilst (i,A) is contained but unconsidered,

the measure
E 3| Bl
Be€barrier

strictly decreases. The proof involved properties of functions takeWhile
and sumList. It also required solving some basic inequalities. These were
proved using blast_tac.

7.3 Failing branch properties

A counter-model is constructed from the branch. Positive atoms are eval-
uated to false if they are on the branch. It is required to show that under
this evaluation all formulas on the branch are false.

For £ a branch following non proof-trees, the following are proven:

~ occurs (i,FAtom Pos p vs) | ~ occurs (j,FAtom Neg p vs)

occurs (i,FConj Pos A0 A1) ==> occurs (0,A0) | occurs (0,A1)
occurs (i,FConj Neg AO A1) ==> occurs (0,A0) & occurs (0,A1)
occurs (i,FAll Pos body) ==> 7 v . occurs (0,instanceF v body)
occurs (i,FAll Neg body) ==> ! v . occurs (0,instanceF v body)

where occurs (i,A) is short for EV (contains f (i,A)). The theorems
justify that formula on this path can be falsified. The 3 one required
case analysis on previously considered formula and some temporal reasoning
along the branch.

If a representation of temporal operators had been developed, then this
temporal reasoning could have been clearer. These proofs require proper-
ties about subs, for example: relating what is contained, considered and
introduced over one step.

12 9 FURTHER WORK

8 Observations

e The de Bruijn indices representation for bound variables greatly
simplified the related formula proofs. With this representation a-
equivalent terms are identical.

e Definitions, representing terminology, were found to be useful. Proofs
via derived-rules seemed shorter than those which unfolded definitions.

e The paper proofs used local definitions and theorems, but this was
not done formally. The lack of context led to explicit parameters in
definitions and common assumptions in lemmas. This was also noted
by Paulson and Grabczewski, [8].

e There were several places where definitions could be abstracted, for ex-
ample there are many definitions of freshVar that satisfy the required
intro-rule. Another example was the function which constructed a
failing branch. Its definition was fully abstracted using exists. This
followed the paper proofs, which showed there was a function, then
took it to be f.

e The development of trees was separated out from the main proof. This
made the proofs clearer, the generalised terms were smaller and it was
easier to see simplifications, e.g. leaf-up induction became apparent.
The additional parameterisation was not a problem. The temporal
reasoning along the branch could also have been separated out.

One reason for formalised proofs to blow-up, may be because they draw
on results from another area. Informally, these results are assumed,
but formally that area needs to be developed. The informal proof
relied on trees and temporal reasoning implicitly.

e Isabelle provides automation. blast_tac,[7], a generic tableaux
prover, was very useful. Solving trivial orderings on naturals seemed
to be harder than it should have been though. This might be simpler
now that decision procedures are available in Isabelle.

9 Further work

Proofs The formal proof scripts developed here are lengthy, not very read-
able and are tied to Isabelle/HOL. These are all areas for improvement.
Proof scripts based on stating and connecting properties, rather than
tactic sequences might address some of these issues.

Abstraction and parameterisation The benefits of scoping and module
facilities in programming is well known. They seem related to the
following aspects of proofs:

13

1. hiding definitions once derived rules and properties are available.

2. hiding arbitrary definitions, e.g. freshVar, which provide wit-
nesses to justify abstraction.

3. parameterising proofs, maybe to support several instances. Sep-
arating out the development of trees is an example of this. One
benefit is the possibility of reuse. Another is having a signature to
work to. It seems easier to explore changes when fewer following
proofs are broken.

Computation There are applications for efficient computation within the-
orem provers. Computation may be useful for concrete arithmetic or
for translations, e.g. compiling programs between abstract machines.
One of the design goals of ACL2 was to support efficient computation,
and this was exploited in a floating point verification proof.

Reflection The evaluation function allows the FOL formula in HOL to
be internalised, meaning they can be replaced by the evaluation of
their corresponding representations. The completeness theorem links
evaluations and deductions. So the representations can be transformed
if justified by valid deductions. Through the evaluation function again
new FOL formula in HOL can be obtained. This form of reflection is
discussed in the metafunctions paper in [4].

In principle it seems possible to write proof procedures whose correct-
ness is proven. The procedures would be coded as functions in the
logic. To be practical they would require efficient computation.

The completeness theorem might help if reflection is also required.
In this case set theory would be more suitable than HOL. There the
reflected FOL formula would be all absolute FOL formula, ones whose
quantifiers can be bounded. Whereas in HOL, here, they would only
be a few specific formula about one type.

One problem might be handling equality. Another might be the use of
derived theorems to justify inferences. And another might be coping
with defined binding operators, like indexed union.

These comments are very speculative. However, they were suggested
by noticing that the implicit tableaux prover could, in principle, be
executed on the representations of FOL formula.

Acknowledgements Paul Taylor’s Commutative Diagrams in TEX
macros were used. EPSRC grants GR/K57381 ‘Mechanizing Temporal Rea-
soning” and GR/K77051 ‘Authentication Logics’ funded some of the equip-
ment used.

14 REFERENCES
References
[1] Aczel, P., Simmons, H., Wainer, S. S., Proof Theory: A Selection of

[10]

[11]

[12]

Papers from the Leeds Proof Theory Programme, Cambridge
University Press, 1992

Barendregt, H. P., The Lambda Calculus: Its Syntax and Semantics,
North-Holland, 1984

Beckert, B., Posegga, J., leanT'P: Lean tableau-based deduction,
Journal of Automated Reasoning 15, 3 (1995), 339-358

Boyer, R., Moore, J., The correctness problem in computer science,
Academic Press, 1981

Paulson, L. C., Isabelle’s object-logics, Tech. Rep. 286, Computer
Laboratory, University of Cambridge, 1993

Paulson, L. C., Set theory for verification: II. Induction and recursion,
Journal of Automated Reasoning 15, 2 (1995), 167215

Paulson, L. C., A generic tableau prover and its integration with
Isabelle, Tech. Rep. 441, Computer Laboratory, University of
Cambridge, Jan. 1998

Paulson, L. C., Grabczewski, K., Mechanizing set theory: Cardinal
arithmetic and the axiom of choice, Journal of Automated Reasoning
17, 3 (Dec. 1996), 291-323

Persson, H., Constructive completeness of intuitionistic predicate
logic: A formalisation in type theory

Shankar, N., Metamathematics, Machines, and Gédel’s Proof, vol. 38
of Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press, 1994

Smullyan, R. M., First-Order Logic, second corrected ed., Dover
Publications, New York, 1995, First published 1968 by Springer-Verlag

van Dalen, D., Doets, H. C., de Swart, H., Sets: Naive, Aziomatic and
Applied, Pergamon Press, Oxford, 1978

